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Abstract 

Biomaterials-based therapies targeting the nucleus pulposus (NP) have the potential to promote 

regeneration and restore mechanical function to the intervertebral disc. This study developed 

composite hydrogels incorporating decellularized NP (DNP) and assessed its effects on 

viability, retention and differentiation of U-CH1 cells, an NP progenitor-like cell line. A 

minimal protocol was developed to decellularize bovine NP that reduced nuclear content while 

preserving key extracellular matrix components predicted to be favourable for bioactivity. The 

resulting DNP demonstrated cell-instructive effects, supporting U-CH1 viability and retention 

within the hydrogels, and promoted the differentiation of the progenitor-like cells towards an 

NP-like phenotype. These studies established a 3-D platform that mimics the native NP 

microenvironment and holds promise for applications in cell culture and delivery. Further in 

vitro studies using this system will provide valuable insight into the effects of tissue-specific 

extracellular matrix on NP progenitor cell fate. 
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Summary for Lay Audience 

Back pain is the most common cause of disability worldwide. While the cause of low back 

pain is complex, it is often linked to intervertebral disc (IVD) degeneration. Although IVD 

degeneration is multifactorial, it is believed to initiate in the central gel-like region of the disc, 

known as the nucleus pulposus (NP). Current treatments focus on pain management by 

medication, physiotherapy and/or exercise therapy; however, there are no disease-modifying 

treatments available for IVD degeneration. Surgical interventions can alter spine 

biomechanics, leading to further degeneration of adjacent discs. These limitations have 

inspired biomaterials-based therapies to regenerate the NP and restore mechanical function to 

the spine. This study developed injectable biomaterial scaffolds using extracellular matrix 

(ECM) from bovine NP tissues as a cell-instructive component. The ECM is a tissue-specific 

complex network of proteins and polysaccharides that provides structure and directs cell 

function. Existing techniques to isolate the NP ECM use harsh chemicals and strong detergents 

to remove donor cells, with the goal of creating off-the-shelf scaffolds that could be applied in 

humans without causing a negative immunological response. This thesis developed a new 

minimalistic protocol for isolating ECM from bovine NP tissues with the goal of better 

preserving the structure and composition of the native ECM to enhance bioactivity. Once the 

protocol was developed and validated, particles of the isolated NP ECM were incorporated 

into an injectable hydrogel, a gel material that can retain a large amount of water to support 

encapsulated cell populations and resembles the structure of the NP ECM. As a first step 

towards testing the regenerative potential of this material, the behaviour of human NP 

precursor-like cells within the hydrogels were assessed. The results indicated that the NP ECM 

enhanced the survival of the precursor cells within the gels and promoted a more mature NP-

like cell phenotype. These studies represent a key first step in developing a new injectable 

biomaterial with potential clinical application for the repair or regeneration of the NP and to 

restore mechanical function to the IVD. 
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Chapter 1  

1 Introduction 

1.1 Clinical significance of intervertebral disc degeneration 
According to the most recent Global Burden of Disease study, low back pain is the leading 

cause of lifetime disability worldwide1. Between 1990 and 2015, years lived with disability 

from low back pain increased globally by 54%2. In Canada, the medical cost for low back 

pain-related cases is estimated to range from 6-12 billion dollars annually3. With an aging 

population, the incidence of low back pain is expected to rise further, imposing a 

substantial socioeconomic burden4. While back pain can originate from several anatomical 

structures of the spine, such as muscles, ligaments, nerve roots, vertebral bodies, facet 

joints and intervertebral discs (IVDs)5, it is linked to IVD degeneration in ~40% of all 

cases6,7. Alarmingly, there are no disease-modifying therapies for IVD degeneration and 

the effect sizes of currently available treatments for back pain, such as physiotherapy, 

exercise therapy, acupuncture and pain management by medication, are low8. 

The IVD is a fibrocartilaginous joint situated between adjacent vertebrae in the spine, that 

facilitates multiaxial motion and dissipates high compressive loads (Fig. 1.1A)9. The IVD 

is composed of three distinct tissues: an inner nucleus pulposus (NP), an outer annulus 

fibrosus (AF), and the cartilaginous endplates (CEPs) that anchor the IVD to the superior 

and inferior vertebrae. The NP is enriched in proteoglycans relative to collagens, reflected 

in an estimated ratio of sulphated glycosaminoglycans (sGAGs) to hydroxyproline of ~27:1 

in young adults (i.e. 15-25 years), resulting in a highly hydrated tissue (~80% H2O by mass) 

that functions mechanically to resist compressive loads10. This tissue is populated by 

cartilage-like cells of notochordal origin referred to as NP cells that play an important role 

in tissue maintenance and mediate responses to changes in the IVD microenvironment 

(discussed in sections 1.3.2 and 1.4)11. The NP is enclosed by the AF, a flexible 

fibrocartilaginous tissue composed of concentric collagen-rich lamellae that function to 

resist tensile forces (Fig. 1.1B). The collagen bundles of the AF are oriented at an 

approximate 30° angle from the transverse plane, and alternate in direction with each 

subsequent lamella12. This arrangement of the fibers creates an angle-ply structure in the 

AF that supports radial forces exerted by the pressurized NP, as well as allows for bending 
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and twisting motions in the spine13,14. The cells in the AF typically extend parallel to the 

collagen fibers15. The CEP is a thin layer of hyaline cartilage rich in collagen type II and 

proteoglycans, populated by chondrocytes16. The CEPs function as an interface, connecting 

the IVD to adjacent vertebral bodies and allowing passive diffusion of nutrients to the 

largely avascular IVD17. 

 

 

Figure 1.1: Schematic illustration of intervertebral disc (IVD) structure. A) The IVDs 
are situated between adjacent vertebral bodies (VB) in the spine, and are composed of three 
anatomically distinct, yet interdependent tissues: an inner gel-like nucleus pulposus (NP), 
an outer fibrous annulus fibrosus (AF), and the cartilaginous end plates (CEP) that line the 
superior and inferior vertebral bodies. B) The gelatinous NP is enclosed by the highly 
organized, lamellar AF with collagen fibers arranged in alternating directions. Figure 
adapted from Pattappa, et al16. 

 

Degeneration of the IVD is associated with increased fibrotic matrix synthesis, 

inflammation, innervation and vascularization to the largely aneural and avascular 

tissue9,18. Although the etiology of disc degeneration is unknown, it is believed to initiate 

with changes in the cellular microenvironment of the NP. The NP plays a critical role in 

maintaining IVD function by absorbing and dissipating axial compressive loads to the 

surrounding AF16. Degenerative changes lead to the loss of hydration in the NP, which 

reduces the overall disc height and the ability of the NP to resist axial compression11. As a 

result, the load is redistributed to the AF, creating an altered mechanical environment that 

can cause structural changes leading to disc herniation or rupture, resulting in severe 

pain9,11,19.  

Nucleus 
Pulposus (NP)

Annulus 
Fibrosus (AF)

Cartilaginous 
Endplate (CEP)

Vertebral 
Body (VB)

A) B)

NP
AF

Alternating 
directions of fibers
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The disc has a limited capacity for repair, and there are currently no disease-modifying 

treatments for disc degeneration. Surgical intervention, such as spinal fusion or artificial 

disc replacement surgery, is required in ~10% of patients with disc degeneration due to 

severe and persistent pain20. While the surgical treatments can alleviate pain, they are 

associated with numerous neurological complications, and can alter spine mechanics, 

leading to further degeneration of adjacent discs21. These limitations have motivated 

research in biomaterials-based therapies to deliver pro-regenerative cell populations to the 

NP to restore function22. 

1.2 The extracellular matrix  
The extracellular matrix (ECM) is a complex three-dimensional meshwork of proteins, 

glycoproteins and proteoglycans assembled in a unique tissue-specific microarchitecture23. 

The ECM is an integral component of all tissues, providing structural support, mechanical 

strength, cell-adhesion sites, and serving as a chemical reservoir for signaling molecules 

that influence cell phenotype and function23,24. Cells interact with the ECM through 

complex mechanisms that can modulate functions such as attachment, migration, 

proliferation, differentiation, and apoptosis25–27. Direct binding of cells to structural ECM 

components can initiate a cascade of intracellular signaling and transmit mechanical forces 

via cytoskeleton organization25–27. Cells can directly bind to various ECM components via 

cell-surface receptors such as integrins28. Integrins are heterodimeric transmembrane 

receptors that have α and β subunits with large modular extracellular domains, single 

transmembrane helices and short cytoplasmic regions that can couple to the cytoskeleton 

and transduce intracellular signaling28,29. In vertebrates, there are 18 α and 8 β subunits that 

can form 24 different integrins with varying affinities to ECM proteins28. The integrins 

function as a link between the cytoskeleton and the ECM, providing bidirectional signals. 

The extracellular domains can recognize various specific sequences in the ECM, and the 

cytoplasmic region can initiate cytoskeleton coupling and transduce intracellular signaling 

that can influence cell behaviour30. The ECM is in ‘dynamic equilibrium’, constantly 

remodeled by cell-secreted proteases (e.g. matrix metalloproteinases (MMPs) and a 

disintegrin and metalloproteinase with thrombospondin (ADAMTS) family members) to 

accommodate tissue growth or to repair damage25–27. The cell-secreted proteases can 

liberate sequestered growth factors and cytokines in the ECM that can interact with cell-
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surface receptors to elicit signal transduction and regulate gene transcription31. While the 

amino acid sequence and quaternary structure of many components of the ECM are 

conserved across species, each tissue-specific ECM is unique in protein composition 

depending on factors including tissue type, location and age of host32. Broadly, the ECM 

is composed of 1) fibrous proteins (e.g. collagen, elastin), 2) glycosaminoglycans (GAGs) 

(e.g. chondroitin sulphate, keratin sulphate), 3) proteoglycans (e.g. aggrecan, biglycan, 

decorin, fibromodulin), and 4) cell-adhesive glycoproteins (e.g. fibronectin, matricellular 

proteins, laminin)28,33. The proportion and organization of these components, as well as the 

presence of specialized macromolecules varies between tissue type31.  

1.2.1 Collagens 

Collagens are proteins that form a right-handed triple helix of polypeptide chains, and play 

an important role by providing structural integrity and tensile strength to the ECM, while 

also interacting with cell-surface receptors to modulate processes including cell adhesion, 

migration, proliferation and differentiation34,35. At least 28 different types of collagens have 

been identified and classified into fibrillar (e.g. type I, II, III, V, XI), network forming (type 

IV, VIII, X), fibril-associated collagens with interruptions in their triple helices (FACIT) 

(e.g. type IX, XII, XIV, XVI), short chain collagens (e.g. type VIII, X), anchoring fibrils 

(e.g. type VII) and other membrane-type collagens (e.g. type VI)34–36. While the collagen 

types vary in size, function and distribution, they are all comprised of three α-chains that 

can be either identical to form homodimers (e.g. collagen type II, III, VII, VIII, X) or 

different to form heterotrimers (e.g. collagen type I, V, VI, IX, XI)34,37. The triple helix 

sequences of each α-chain contain glycine-X-Y amino acid repeats, with the X and Y 

positions often occupied by proline and 4-hydroxyproline, respectively35.  

The structure of each collagen type provides a specific function in the ECM. Fibrillar 

collagens, such as collagen types I and II, are arranged in highly organized aggregates 

known as fibrils, crosslinked at the telopeptide regions by the enzyme lysyl oxidase, 

providing tensile strength and resistance to compressive loads in tissues38,39. FACIT 

collagens do not form fibrils, but are associated with the surface of collagen fibrils34. The 

structure consists of short triple helical domains inter-dispersed with other non-triple 

helical and non-collagenous domains40. FACIT collagens, such as type IX, can contribute 

to the stabilization of the fibrillar collagen network and anchorage of other ECM 
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components, such as proteoglycans41. Collagens that do not fall in any category, can bind 

to different components of the ECM, aiding in cell-ECM interactions, and have important 

roles in cell signaling. For example, collagen type VI has been shown to regulate 

autophagy, cell differentiation and have cytoprotective effects, including counteracting 

apoptosis and oxidative damage in connective tissues42. 

1.2.2 Elastin  

Elastin is a hydrophobic protein that can stretch and recoil, providing long-range elasticity 

to various connective tissues including cartilage, ligaments, blood vessels, and skin28. The 

monomeric soluble precursor tropoelastin, the main component of the elastin, is 

synthesized intracellularly and transported into the extracellular space via exocytosis, 

where it is crosslinked through the enzyme lysyl oxidase43,44. Members of the fibulin 

protein family integrate the newly-forming elastin to existing microfibrils in the ECM45. In 

addition to the structural support, elastin also plays a role in cell adhesion, migration and 

signaling45.   

1.2.3 Glycosaminoglycans 

GAGs are highly anionic linear unbranched polysaccharides with disaccharide repeating 

units composed of uronic acid (D-glucoronic acid or L-iduronic acid) joined by a glycosidic 

bond to an amino sugar (D-galactosamine or D-glucosamine)46. The sugars typically 

contain carboxylic acid or sulphate groups, which are deprotonated at physiological pH, 

giving the GAGs a high negative charge density46,47.  This results in the attraction and 

retention of water through osmosis, which provides the tissue with low compressibility and 

shock absorbing properties46. Further, the GAGs can bind and sequester soluble growth 

factors and cytokines that can be liberated through selective degradation of the matrix, 

regulating their spatial and temporal availability and activity48. In addition to these 

contributions, the GAGs can be bound to cell surface receptors (e.g. hyaluronan binding 

CD44 receptor) and matrix components (e.g. laminin, fibronectin, collagen type I) aiding 

in cell-ECM interactions that modulate a range of cell functions including adhesion, 

growth, differentiation46,49.  

There are two main types of GAGs: sulphated GAGs (chondroitin suphate, keratin 

sulphate, heparan sulphate) and non-sulphated GAGs (hyaluronan). The geometry of the 
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glycosidic linkage between the two units of the disaccharides, as well as the type of 

hexosamine or hexuronic acid unit provides further distinction between the various types 

of GAGs46,47. The GAGs play a major role in cell signaling and development, and deficient 

GAG synthesis is associated with numerous defects in embryogenesis and postnatal 

diseases50,51.  

1.2.4 Proteoglycans 

Proteoglycans are a class of glycosylated proteins with one or more sulphated GAG chain 

covalently linked to a specific protein core31. ECM proteoglycans can be divided into two 

main groups: 1) hyaluronan- and lectin-binding proteoglycans (hyalectans) and 2) small 

leucine-rich proteoglycans (SLRPs)52. The hyalectans are a family of proteoglycans (e.g. 

aggrecan, versican, neurocan, brevican) that contain a large protein core and have a 

hyaluronan-binding N-terminal domain, a central domain harboring the GAG side chains, 

and a lectin-binding C-terminal region52,53. Aggrecan is the most commonly studied 

hyalectan, as it is the principal load-bearing proteoglycan in cartilaginous and NP tissues52. 

As the name indicates, aggrecan can aggregate into large supramolecular complexes 

(> 200 MDa) with hyaluronan and link protein to generate a densely packed hydrated gel 

that can be supported by a network of reinforcing collagen fibrils, glycoproteins, and other 

proteoglycans52,54. In aggrecan, following the N-terminal hyaluronan-binding domain, the 

central GAG-binding domain contains numerous keratin sulphate chains, followed by >100 

chondroitin sulphate chains that generate electrostatic repulsion forces that contribute 

towards the compressive moduli of tissues52. The C-terminal region can bind to collagen 

type II, other ECM proteins or cell surface constituents, and can provide mechanosensitive 

feedback to cells52. The SLRPs are a class of proteoglycans (e.g. fibromodulin, biglycan, 

decorin) containing a relatively small protein core (~36–42 kDa) as compared to 

aggregating proteoglycans, and encompass a central region constituted by leucine-rich 

repeats. SLRPs have many biological functions varying from regulating collagen 

fibrillogenesis to binding to growth factors and cytokines such as transforming growth 

factor beta (TGF-β) and bone morphogenetic protein (BMP), influencing cell proliferation, 

differentiation, apoptosis and other cellular functions31,52. 
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1.2.5 Glycoproteins 

Glycoproteins are proteins with covalently bound carbohydrates that can function as 

adhesive intermediates that link components of the ECM and can promote cell attachment 

to the matrix31,55. Integrins can recognize and bind to specific sequences on glycoproteins 

to enable cell adhesion and regulate downstream processes such as transcription factor 

activity and protein expression56. Two examples of commonly studied glycoproteins are 

fibronectin and laminin, which have commonly been used in cell culture and biomaterial 

synthesis to enhance cell attachment and survival57,58. Fibronectin exists in a dimer 

conformation with multiple binding sites (heparin, fibrin, collagen, and cell surface binding 

domains) along each of the two polypeptide chains, connected at the C-terminus domain 

with two disulphide bonds59. The cell attachment domain contains a tri-peptide arginine-

glycine-aspartic acid motif (RGD), that binds to αvβ3 and α5β1 integrins on cells60. The 

multiple binding sites along fibronectin allow for different cells types, cytokines and ECM 

components to interact simultaneously59. Laminin is comprised of three polypeptide chains 

(i.e. α-chain, β-chain, and γ-chain) that form a cross-like structural network, interwoven 

with collagen type IV28.  Similar to the RGD sequence on fibronectin, the laminin α1 chain 

contains an isoleucine-lysine-valine-alanine-valine motif (IKVAV) that can bind to 

integrins (e.g. α1β1, α2β1, α3β1) and modulate cell attachment, proliferation and 

maintenance of cells in the differentiated state61,62.   

1.3 The nucleus pulposus  

1.3.1 The extracellular matrix in the nucleus pulposus 

The ECM of the NP is composed primarily of large aggregating proteoglycans held 

together by a loose, irregular meshwork of collagen type II and elastin fibers (Fig. 1.2). 

Proteoglycans are the largest component of the NP, with aggrecan as the major 

proteoglycan63,64. The negatively charged GAGs within the proteoglycans attract water, 

exerting a high osmotic swelling pressure that, in combination with the collagen network, 

provides stiffness in the NP, enabling it to resist compressive loads65. Additionally, the 

GAGs sequester growth factors in the IVD (e.g. IGF-1, TGF-β, BMP 2/4/6) that can 

regulate matrix production and direct cell proliferation, differentiation, migration, and 

apoptosis66. The NP ECM also contains low amounts of other ECM macromolecules 
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including: fibronectin, collagens (fibrillar type I, III, V, XI; FACIT type VI; and category-

less collagen type IX), and SLRPs (biglycan, decorin and fibromodulin)67,68. The specific 

combination, concentrations and organization of the various macromolecules gives the 

tissue its unique biochemical and biomechanical properties that allows the tissue to 

function as a viscoelastic material capable of absorbing compressive loads by variations of 

osmotic pressures69.  

 
 
 

 

Figure 1.2: Schematic illustration of the extracellular matrix (ECM) structure and 
function within the nucleus pulposus (NP). The unique load-bearing properties of the NP 
are provided by a high osmotic swelling pressure created by aggrecan, the major 
proteoglycan of the NP, which draws water into the ECM. Aggrecan is immobilized in the 
NP by forming biocomplexes with hyaluronan and link protein. The irregular meshwork 
of collagen type II and elastin fibers reinforce tensile strength within the ECM, exerting a 
high hydrostatic pressure that allows the NP to absorb compressive loads in the spine. 
Figure adapted from Hardingham70. 
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1.3.2 Cell populations in the nucleus pulposus 

The NP is composed of a heterogeneous population of cells that change drastically by the 

first decade of human life9. At birth, the NP is composed primarily of large (~25–85 µm) 

physaliphorous notochord cells, derived from the embryonic notochord9,71. In most 

vertebrates, the population of notochord cells within the NP begins to decline shortly after 

birth and are undetectable by early adolescence, replaced by small (~10 µm) spherical 

cartilage-like cells, termed NP cells71–73.  

Lineage-tracing experiments in mice by our group74 and others75 have shown that 

notochord cells give rise to the terminally differentiated NP cells. In the developing 

embryo, the notochord is a transient rod-like structure that forms the primitive 

anterior/posterior axis. It plays an important role as a signaling center, secreting growth 

factors and morphogens that pattern the surrounding tissues9. Postnatally, the notochord 

cells within the IVD maintain their role in cell signalling by secreting factors that inhibit 

NP cell death and apoptosis76, and protect NP cells from degenerative changes by 

upregulating anabolic gene expression while downregulating catabolic gene 

expression9,76,77. The co-localization of notochord and NP cells appears to be fundamental 

in maintaining disc homeostasis72,78.  

In healthy tissue, notochord cell-secreted factors such as connective tissue growth factor 

(CTGF), transforming growth factor beta (TGF-β) and sonic hedgehog (Shh), can limit 

enzymatic degradation of the ECM by inhibition of MMP production and stimulation of 

tissue inhibitors of metalloproteinases (TIMPs) production69. MMPs are a family of nine 

or more highly homologous endopeptidases that can collectively cleave most of the ECM 

constituents79. An imbalance in their production and activation, relative to their inhibition 

by TIMPS can cause degenerative changes in the NP79. Apoptosis and tissue 

neovascularization is prevented through inhibition of the expression of vascular 

endothelium growth factor (VEGF), interleukins 6 and 8 (IL-6 and IL-8) in the NP cells by 

notochord-secreted factors69. The stimulation of NP ECM synthesis by notochord-derived 

CTGF and Shh also results in the secretion of TGF-β1 from NP cells that in turn stimulate 

CTGF synthesis by notochord cells76,80,81. This molecular exchange between notochord and 

NP cells promotes the expression of anti-catabolic and pro-anabolic factors that contribute 

to NP tissue homeostasis69.  
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The loss of notochord cells is associated with the onset of disc degenerative changes to the 

IVD9. The differentiation of notochord cells towards mature NP cells is not well 

understood, and further work is required to identify the temporal and spatial regulation of 

gene expression during differentiation. Many genes (e.g. Brachyury (T), cytokeratins-8/-

18 (KRT-8, KRT-18), CD24) expressed in the notochord are also expressed in mature NP 

cells, in keeping with the finding that all cells of the NP have a shared ontogeny82,83. Some 

work has focused on identifying genes differentially expressed in notochord and NP cells. 

For example, a recent study showed that notochordal cells abundantly express the 

transcription factor T, and the cell-surface antigen CD24, which show decreased expression 

in mature NP cells84 

While the phenotypic profile of NP cells during development, growth, maturation, and 

degeneration has yet to be defined, recent attempts have been made to identify the 

phenotype of the “healthy” NP cell by detailing a panel of potential gene, protein and 

metabolic markers. Based on the criteria of 1) expression specific to healthy NP cells, 2) 

requirement for healthy NP function and physiological relevance, and 3) mRNA and 

protein expression validated across species, the ORS Spine Research Interest Group 

proposed a list of the following primary markers: stabilized expression of stabilized 

hypoxia-inducible factor-1α and -2α (HIF-1α and HIF-2α), the glucose transporter GLUT1, 

the signaling factor sonic hedgehog (Shh), T, the carbonic anhydrases CA3 and CA12, the 

CD24 antigen, and the keratins KRT-8, KRT-18, and KRT-1983,85.  

1.4 Changes in the nucleus pulposus associated with 
intervertebral disc degeneration 

Degenerative changes in the NP are thought to be induced by multiple factors including 

aging, genetics, biomechanics, and environmental factors (e.g. nutrient supply, pH)9,69. The 

healthy NP is a gel-like, highly hydrated tissue rich in proteoglycans that allow it to 

generate an intradiscal pressure that separates the two vertebrae and evenly distributes the 

pressure to the AF and over the two adjacent CEPs86. A degenerated NP contains an ECM 

that is disorganized and fibrous, unable to bind water under compression and appropriately 

distribute loads in the spine86. Overall, degenerative changes in the NP are marked by a 

decrease in the number of NP cells, increased catabolic and deceased anabolic factors  that 

lead to an altered ECM environment and change the NP tissue biomechanics. With changes 
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in mechanical and/or biochemical cues from the microenvironment, the cells of the NP 

decrease proteoglycans and collagen type II production87,88, and increase the production of 

collagen type I, which results in an increasingly fibrotic NP matrix87,89,90. The decrease in 

healthy ECM production (i.e. rich in proteoglycans) will lead to reduced hydrostatic 

pressure that alters biomechanics in the NP. The shift in tissue biomechanics can further 

impact cellular physiology, resulting in increased NP cell senescence and altered gene 

expression that further decreases anabolic and increases catabolic activity in the NP89,91. 

These interactions serve as a positive feedback loop that leads to progressive degeneration 

of the tissue89,91.   

The phenotypic change in NP cells associated with degeneration includes increased 

production of matrix degrading enzymes and pro-inflammatory cytokines, and decreased 

production of anabolic factors and synthesis of healthy ECM69. While the molecular 

mechanisms regulating disc degeneration is currently under investigation, a common 

finding is that NP cells increase synthesis of ADAMTS-1, -4, -5, -9 and -15, as well as 

MMP-1 and -3, which degrade aggrecan and type II collagen69. The aggrecan biocomplex 

can be cleaved from the hyaluronan backbone at the N-terminal binding domain and several 

locations along the GAG-binding domain92,93. The cleaved aggrecan fragments cannot 

aggregate, reducing their efficacy in binding to water94. Fragments of collagen type II have 

been shown to inhibit collagen synthesis, cell attachment to collagen, as well as induce 

matrix degradation in cartilage, and it may play a similar role in promoting degenerative 

changes in the NP79. An increase in pro-inflammatory cytokines including IL-6, IL-8, and 

prostaglandin E2 (PGE2) stimulates nerve growth factor (NGF) production, combined with 

an upregulation of VEGF can promote abnormal nerve ingrowth and vascularization into 

the previously avascular and anural tissue95. Further, with the induction of vascularization 

and increased synthesis of cytokines that stimulate the recruitment of immune cells (e.g. 

IL-8, CCL2, 3, 4, 5, 7), there is an increase of IL-1β and tumor necrosis factor α (TNFα) 

production95. These two major pro-inflammatory cytokines further promote the production 

of matrix degrading MMPs and ADAMTS, while suppressing the expression of TIMPs, 

dysregulating the balance between catabolism and anabolism in the NP95.  

Local differences in tissue tension and pressure can produce mechanical stimuli that 

directly influence cell phenotype and matrix production by influencing catabolic, anabolic 
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and inflammatory cell responses in the IVD86. For example, a hydrostatic pressure of 

0.3 MPa was found to have ~20% higher proteoglycan production, lower MMP-3 

production and higher TIMP production as compared to 0.1 MPa in human and IVD 

explants96,97.  Similar to other load-bearing tissues including cartilage and bone, an increase 

in shear stress can upregulate the production of collagen type I86. Further, increased shear 

stress can also increase production of nitric oxide, a reactive oxygen metabolite that can 

reduces proteoglycan production, and increases apoptosis in cells of the IVD86. As such, 

reduction in intradiscal pressure, which translates to a shift of hydrostatic pressure to shear 

stress, can result in further degeneration of the NP86. This complex disease involves 

multiple factors that may initiate at any stage and accelerate due to the interdependency of 

altered cellular physiology, the ECM and NP tissue biomechanics. 

1.5 Regenerative therapies targeting the nucleus pulposus 
Regenerative approaches aim to restore IVD tissue biochemical composition and 

biomechanical function. A scaffold that mimics the native NP ECM is an attractive 

approach to deliver and support the survival of pro-regenerative cells for IVD regeneration. 

In theory, while the delivered cells regenerate the NP ECM, a mechanically robust scaffold 

could restore IVD tissue biomechanical function. 

Naturally-derived and synthetic materials that have non-toxic and sterile components, 

match the structural and mechanical properties of the native NP, and biodegrade are the 

target objectives when designing potential scaffolds for IVD regeneration. Naturally-

derived materials, such as collagen, hyaluronan, alginate, chitosan, and decellularized 

matrices, can mimic the native ECM biochemistry and structural properties, providing 

inherent cell-instructive cues to promote regeneration98. Since collagen type II and 

hyaluronan are major components of the NP ECM67, they have been commonly studied as 

scaffolds for NP regeneration98. For example, composite collagen type II-hyaluronan 

hydrogels have been shown to support the survival and proliferation of rat MSCs99 or 

bovine NP cells100 cultured within the scaffold, and promote GAG production99,100. Other 

natural materials, such as alginate and chitosan have also shown potential as cell-supportive 

scaffolds. For example, alginate and chitosan-gelatin hydrogels promoted the survival and 

proliferation of human NP cells cultured in vitro for up to 21 days, with alginate gels better 

supporting viability as compared to chitosan-gelatin hydrogels at later timepoints101. While 
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inherently cell-supportive, many natural materials are mechanically weak and show low 

stability unless chemically crosslinked, raising concerns that they will be unable to 

withstand loads in the spine102.  Further, with some naturally-derived materials there can 

be considerable batch-to-bath variability in bioactivity, which may result in inconsistent 

outcomes when applied in vivo103. Synthetic materials, such as  poly(ethylene glycol) and 

poly(lactic-co-glycolic acid), can address some of these limitations, as they can be designed 

to be more mechanically robust and have more tunable mechanical properties104.  Further, 

their composition and material properties can be more precisely and reproducibly 

controlled105. However, these materials lack the innate biological cues to support long-term 

survival and direct cell function104. The incorporation of bioactive ligands or growth factors 

within synthetic scaffolds may help to circumvent these issues98. For example, conjugating 

laminin to poly(ethylene glycol) noticeably increased cell attachment in vitro, and 

promoted the in vivo survival and retention of porcine NP cells58. While modifications may 

improve cell-attachment and retention, many traditional synthetic materials may still 

degrade very slowly in vivo through non-enzymatic hydrolysis105,106. This can lead to 

fibrous capsule formation and other foreign-body immune responses upon 

implantation105,107. When designing biomaterials, it is important to consider that their 

degradation products must also be non-cytotoxic and be readily metabolized or eliminated 

from the body106. Combining naturally-derived, synthetic and/or semi-synthetic materials 

to develop new scaffold platforms that better mimic the native NP environment and have 

tunable properties could aid in the development of new biomaterials-based therapeutic 

approaches for NP regeneration. Further, these systems could have utility as tissue-specific 

3-D culture models for studying NP cell function. 

1.6 Decellularized tissue bioscaffolds 
Decellularized tissue bioscaffolds are one of the most promising scaffolds for regenerative 

medicine applications as they most closely mimic the native tissue environment. The 

decellularization process aims to remove cellular and nuclear content while preserving the 

ECM composition and ultrastructure. The matricellular proteins, growth factors, cytokines, 

and other secreted signals embedded in the ECM are known to play an important role in 

directing cell phenotype28,108. The ECM composition, ultrastructure and mechanical 

properties of decellularized scaffolds vary greatly depending on the processing and 
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preparation methods employed24. Commercially available allogenic and xenogeneic 

decellularized tissue bioscaffolds developed from skin, pericardium, and small intestinal 

submucosa have shown variable efficacy in the clinic, which can be attributed in part to 

processing methods109. This variability emphasizes the need for detailed evaluation of 

decellularized tissue bioscaffolds to quantify nuclear content and levels of key structural 

and bioactive ECM components.  

Since decellularization techniques are unable to remove 100% of DNA content, it is 

important to identify the level of residual double stranded DNA (dsDNA) in the processed 

tissues110. While there are no established criteria, the minimal guidelines for decellularized 

tissues were suggested by the Badylak group to be: 1) <50 ng dsDNA/mg of tissue dry 

weight, and 2) lack of visible nuclei in tissues stained with 4’,6-diamidino-2-phenylindole 

(DAPI)111,112. While these suggestions were shown to reduce a proinflammatory host 

response to decellularized porcine small intestinal submucosal112, the level of residual cell 

and nuclear content that may elicit a negative immunogenic response in other tissue types 

remains unknown113. Protocols must be optimized for each specific tissue-type since they 

have unique cellularity, composition and structure. There is a general need to develop more 

rigorous standards and release criteria for the acceptable amount of residual cellular 

material in the scaffolds to ensure safe use in clinic32,114. 

Previously reported strategies to decellularize tissues include a combination of physical, 

chemical, and/or biological treatments. The specific decellularization reagents, processing 

times, and processing sequence can vary depending on the tissue-specific cellularity, 

porosity and ECM composition. In general, decellularization treatments typically lyse cell 

membranes, and the cellular and nuclear components must be separated from the ECM, 

solubilized or digested, and removed from the tissue115. Physical decellularization 

strategies include freeze/thaw cycles, incubation or agitation in hypotonic or hypertonic 

solutions, mechanical abrasion, tissue compression, and exposure to supercritical fluids113. 

These methods seek to disrupt the cell membrane, thereby making the cellular and nuclear 

content more accessible for extraction113. Chemical treatments including detergents, acids, 

bases, organic solvents, and alcohols, aid in solubilizing the cellular and nuclear 

components in order to separate them from the ECM113. Biological treatments are included 

to selectively cleave cell adhesion proteins to dissociate cells from tissues (i.e. protease; 
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trypsin, dispase), hydrolyze cell phospholipids (i.e. esterases; phospholipase A2), and 

digest the nuclear remnants (i.e. nucleases; DNase/RNase)113. Wash steps between, and 

following treatments aim to clear the processed tissues of treatment solutions and 

solubilized components. 

All NP decellularization protocols to date use a combination of detergents to aid in the 

removal of cells by destabilizing the cell membrane and enabling cell lysis116–121. Based on 

their hydrophilic head groups, detergents are separated into nonionic, zwitterionic, and 

ionic. Non-ionic detergents, such as Triton X-100, may better preserve tissue structure and 

composition as compared to zwitterionic and ionic detergents, which can interact more 

strongly with charged components in the ECM113. However, these detergents may be less 

effective in extracting cells as compared to zwitterionic and ionic detergents113. 

Zwitterionic detergents, such as sulfobetaine-10 and -16 (SB-10 and SB-16), have a 

hydrophilic head group with a net zero electric charge, and are thought to protect the native 

state of proteins113. While ionic detergents, such as sodium dodecyl sulphate (SDS), sodium 

deoxycholate and Triton X-200, have been shown to effectively extract cells from a number 

of different tissues, they are also known to denature proteins, remove growth factors from 

the ECM, and remain in the ECM even after many washes113. The detergent residues from 

these strong ionic detergents can have cytotoxic effects, posing a barrier to the goal of 

eventual clinical translation113.  

The first effort to decellularize the NP by Mercuri et al explored the use of Triton X-100 

and deoxycholic acid at varying concentrations for 72 h (room temperature; 150 rpm), 

followed by nucleic acid digestion using 720  mU/mL DNase and 720  mU/mL RNase for 

48 h (37°C; 150 rpm) on porcine NP sectioned into halves116. While an increase in 

concentrations of detergents resulted in a decrease of visible nuclei within the processed 

tissues, incubation alone in these solutions were found be insufficient in effectively 

reducing nuclear content (~50% reduction)116.  The addition of ultrasonication, which is 

thought to disrupt cell membranes by the formation and subsequent collapse of microscopic 

cavitation, resulted in processed tissues devoid of visible nuclei and DNA fragments as 

assessed by histology and agarose gel electrophoresis, respectively116. While the final 

protocol by Mercuri et al effectively reduced cell nuclei, it resulted in noticeable 

disruptions in the ECM structure, with a significant loss in sGAG content (~50% reduction) 
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and a qualitative decrease in aggrecan, collagen types II, IX and XI within the 

decellularized NP (DNP)116.  

Subsequent efforts by other groups have explored the effects of varying the concentration 

and incubation times of other detergent-based treatments to decellularize the NP. 

Consistently, it has been shown that the NP ECM structure is further disrupted with 

increased processing time118,119,122. For example, Lin et al explored the effects of freeze-

thaw cycles as a method to lyse cell membrane, followed by detergent extraction and 

enzymatic digestion of DNA content on whole rabbit IVDs118. The protocol, which 

consisted of an incubation in 2% Triton X-100 for 24 h (4°C; 100 rpm), followed by 

extraction in 1% SDS for 24 h (4°C; 100 rpm), and finally enzymatic digestion with 

200 U/mL DNase for 12 h (37°C; 100 rpm), resulted in no detectable nuclei and >97% 

reduction of DNA content in the processed tissues118. Additionally, there was a qualitative 

preservation of aggrecan, collagen types I and II based on immunohistochemical 

analyses118. However, these proteins were not quantified in the processed tissues. In 

establishing this protocol, Lin et al found that DNase was important in reducing nuclear 

content, as higher concentrations of Triton X-100 and SDS (3% and 2%, respectively) 

without the use of DNase were not as effective in reducing DNA within the processed 

tissues118. Performing the incubations at 4°C was postulated to reduce ECM degradation 

caused by proteases released from lysed cells, which can also be addressed with the 

supplementation of phenylmethylsulfonyl fluoride (PMSF), a serine protease inhibitor113.  

In an attempt to reduce the processing time for decellularizing the NP, Illien-Jünger et al 

increased the surface area of the processed NP by grinding the tissue prior to treatment 

with detergents120. The protocol involved 5 freeze-thaw cycles, lyophilization and tissue 

grinding of the bovine NP prior to processing with 2% sodium deoxycholate for 1 h (37°C, 

with agitation), and subsequently DNase for 1 h (37°C, with agitation)120. While this 

protocol involving relatively short durations of detergent/DNase incubations was effective 

in significantly reducing DNA content within the processed tissues, it also significantly 

decreased sGAG content (~83% reduction)120. The findings from this work indicate that 

the surface area of NP could be adjusted prior to processing in order to find a suitable 

surface area that minimizes decellularization treatments required while improving GAG 

retention. All decellularization methods will alter the ECM to some degree. Further work 
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is required to develop a minimal procedure that effectively removes cellular/nuclear 

content while preserving as much of the microarchitecture and complex tissue-specific 

composition of the ECM as possible. 

1.7 Hydrogels 
Hydrogels are three-dimensional hydrophilic networks of synthetic or natural polymers 

that are able to absorb and retain large amounts of water123. Hydrogels maintain their 

structure by chemical bonds (covalent bonds), physical interactions (chain entanglement, 

ionic and hydrophobic interactions, hydrogen bonding) or by a combination of both124. 

Hydrated hydrogels can be promising cell delivery platforms as they closely resemble soft 

tissues, and facilitate nutrient, oxygen and waste transfer by diffusion125. Furthermore, their 

physicochemical properties (pore size and electric charge), mechanical properties (stiffness 

and tensile strength), and bioactivity (cell adhesion, migration and scaffold biodegradation) 

can be tailored by chemical modifications126.  

Hydrogels can undergo in situ gelation (i.e. crosslinking following delivery to the desired 

site) via photo-initiated, thermal-initiated or physical-initiated crosslinking. Chemical 

crosslinking (i.e. photo- and thermal-initiated) typically results in polymer networks that 

have superior mechanical strength as compared to physical-initiated crosslinking127. 

However, commonly used crosslinkers (e.g. glutaraldehyde, ethylene glycol diglycidyl 

ether) and/or residual unreacted radicals can have cytotoxic effects on encapsulated 

cells127,128. Physical crosslinking overcomes these limitations; however, the resulting 

polymer network possesses limited mechanical properties and is not as stable as those 

formed by chemical crosslinking127.   

Cell-seeded hydrogels have been investigated for NP regeneration and have shown promise 

as a potential therapy. For example, human MSCs cultured at 5% O2 within a 

thermoresponsive Laponite® crosslinked pNIPAM-co-DMAc (L-pNIPAM-co-DMAc) 

polymer, had an increased expression of NP-associated markers (HIF1α, FOXF1, PAX1) 

following 6 weeks of culture as compared to cells grown in monolayer culture129. When 

injected into bovine IVD tissue explants, the MSCs within the L-pNIPAM-co-DMAc 

hydrogels were found to secrete NP ECM components (collagen type II, aggrecan and 

chondroitin sulphate) following 6 weeks of in vitro culture at 5% O2, mimicking the oxygen 
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level in the native NP environment130. The hydrogel system was reported to restore disc 

height and stiffness in an ex vivo collagenase digested bovine disc explant model by filling 

micro and macro fissures130. As another example of hydrogels for NP regeneration, studies 

using methacrylated gellan gum hydrogels have shown that MSCs131 or human IVD cells132 

survive within the gels for up to 21 days, secrete NP ECM components (collagen type II 

and aggrecan), display low cytotoxicity131 and an acute inflammatory response132 when 

implanted subcutaneously in mouse131 or rat132 models. While further detailed in vivo 

investigation is required to radiographically assess restoration of disc height, as well as 

detailed gene and protein expression analyses to evaluate differentiation towards an NP-

like phenotype, studies may suggest that hydrogel systems hold promise as a potential 

therapy for IVD degeneration.  

1.7.1 Chondroitin sulphate-based hydrogels 

Chondroitin sulphate (CS)  is the most abundant GAG in the NP ECM133. CS consists of 

repeating 4- or 5- sulphated D-glucuronic acid and N-acetyl galatosamine disaccharide 

units134. Interestingly, CS exhibits anti-inflammatory properties in animals and osteo-

arthritic patients135, and has water and nutrient absorption capabilities136. By conjugating 

polymerizable moieties, such as methacrylate groups, onto the pendant hydroxyl groups, 

this compound has previously been used to derive biocompatible hydrogels for tissue-

engineering applications137. The polymerizable moieties can be crosslinked to form a gel 

using ultraviolet (UV) light, changes in temperature, or pH with an appropriate initiator137. 

Previously, groups have functionalized CS with polymerizable methacrylate groups to 

obtain methacrylated CS (MCS), and have successfully encapsulated chondrocytes within 

UV-crosslinked MCS138. They have shown in a large animal (goat) model that MCS 

hydrogels photopolymerized into critical-size chondral defects enhanced cartilage tissue 

repair over 6 months, as compared to untreated defects137. 

1.7.2 Hydrogel composites 

Although natural and synthetic scaffolds have their merits in tissue engineering 

applications, composite hydrogel scaffolds incorporating both natural and synthetic/semi-

synthetic components can overcome limitations associated with each individual class. 

Functionalizing or incorporating natural materials into synthetic polymers can combine the 
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cell-supportive and cell-instructive properties of naturally-derived materials with the 

enhanced mechanical tunability offered by synthetic or semi-synthetic platforms. In 

particular, incorporating ECM particles as a cell-instructive component within hydrogels 

has shown promising results. Our group has previously develop functional platforms that 

support cell viability and differentiation by incorporating porcine cartilage ECM and 

human adipose ECM particles into UV- and thermally-crosslinked MCS at a degree of 

methacrylation of 17-20%, which enabled crosslinking while maintaining high cell 

viability139. Further, we have explored MCS as a tunable platform by varying parameters 

such as ECM particle size and concentration and exploring the effects on proliferation and 

differentiation of adipose-derived stem/stromal cells (ASCs)140. In comparing the effects 

of varying particle concentrations (3 w/v% vs 5 w/v%), incorporating a higher density of 

the adipose ECM within the MCS hydrogels resulted in higher ASC viability over 14 days 

of culture141. When comparing the effects of varying particle sizes (278 ± 3 μm vs 

38 ± 6 μm), we found that adipogenic differentiation was significantly enhanced in 

scaffolds with small ECM particles and a higher density of ASCs, postulated to be due to 

enhanced cell-cell interactions142. In vivo investigation complimented these findings with 

mature adipocytes visualized within ASC-seeded and unseeded composite MCS+ECM 

scaffolds at 12 weeks, indicating that the constructs promoted adipogenesis in a 

subcutaneous Wistar rat model141.  

1.8 Project rationale, hypothesis and aims 

1.8.1 Rationale  

Currently, there are no disease-modifying treatments for IVD degeneration. Biomaterials-

based therapies targeting the NP have the potential to improve mechanical function, and 

may establish a pro-regenerative microenvironment to support delivered or endogenous 

cell populations. Once thought to simply provide structural support, the ECM is now 

recognized as a bioactive microenvironment that directs and influences cell function28,108. 

This study aimed to develop biomaterials that harness the regenerative potential of tissue-

specific ECM for NP regeneration and assesses their ability to direct the function of NP 

cells. Since primary notochord cells are difficult to obtain and current protocols for NP cell 

monolayer culture do not effectively maintain cell phenotype in vitro, the current study 

used the human chordoma-derived U-CH1 cell line143. These cells demonstrate a stable 
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notochord-like phenotype in vitro, marked by the expression of the embryonic notochord 

markers brachyury, CD24, KRT19, epithelial marker antigen, vimentin, and cytokeratin144–

146, making them an attractive model to investigate human NP progenitor cell response 

within our constructs. 

1.8.2 Hypothesis 

Given the important role the ECM plays in directing cell phenotype, I hypothesize that 

ECM derived from DNP will have cell-instructive effects and will promote the lineage-

specific differentiation of human notochord-like cells.  

1.8.3 Specific aims 

Aim 1: To develop a decellularization protocol for bovine NP, and characterize the 

retention of key ECM components including GAG and collagen in the processed tissues.  

Aim 2: To fabricate and characterize the physical properties of composite scaffolds 

incorporating decellularized nucleus pulposus (DNP) or non-tissue-specific bovine tendon 

collagen (COL) within in situ crosslinking methacrylated chondroitin sulphate (MCS) 

hydrogel carriers. 

Aim 3: To assess the viability, retention, and differentiation of human notochord-like cells 

cultured within MCS ± DNP/COL constructs. 
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Chapter 2  

2 Methods 

2.1 Materials 
All chemical reagents were purchased from Sigma-Aldrich Canada Ltd. (Oakville, 

Ontario) unless otherwise indicated. 

2.2 Development of a protocol for nucleus pulposus 
decellularization 

Bovine tails (from animals 9-30 months of age) were obtained 2 hours post-mortem from 

the Mount Brydges Abattoir (Mount Brydges, Ontario). The muscle, soft tissues and 

ligaments surrounding the caudal spinal column were removed aseptically and the nucleus 

pulposus (NP) was removed by dissection from 8 IVDs. The pooled NP was then sectioned 

into quarters using a scalpel (Protocol 1) or biopsy punched (2 mm, Protocols 2 and 3) 

before being processed for decellularization with ~15 g of NP/100 mL solution in a 500 mL 

tub. For all protocols, the incubation steps were performed at 37°C under agitation 

(125 rpm). All solutions, with the exception of the enzymatic digestion steps, were 

supplemented with 1 v/v% antibiotic-antimycotic (ABAM) (Gibco®, Invitrogen, 

Burlington, Ontario) and 0.27 mM phenylmethylsulfonyl fluoride (PMSF); the enzymatic 

digestions were supplemented with only 1 v/v% ABAM. 

Protocol 1: The original protocol investigated was based on established protocols in the 

Flynn lab for the decellularization of porcine auricular cartilage, which were adapted from 

published methods for the decellularization of human nasoseptal cartilage147. Minced NP 

was subjected to 3 freeze-thaw cycles (-80°C overnight / 37°C for 3 h) in Solution A 

[10 mM tris (hydroxymethyl)aminomethane (Tris), 5 mM ethylenediaminetetraacetic acid 

(EDTA), (pH 8.0)], with buffer replaced following each thaw. Tissues were then incubated 

for 24 h in Solution A followed by 48 h incubation in Solution B [1.5 M KCl with 2 v/v% 

Triton X-100 and 50 mM Tris buffer, (pH 8.0)]. Tissues were rinsed 3 x 30 min in 

phosphate buffered saline (PBS) prior to 5 h incubation in Sorensen’s phosphate buffer 

digest solution [SPB digest; 0.55 M sodium phosphate dibasic heptahydrate 

(Na2HPO4·7H2O), 0.17 M potassium phosphate (KH2PO4), 0.049 M magnesium sulphate 
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heptahydrate (MgSO4·7H2O), (pH 7.3)] supplemented with 15,000 U DNase Type II (from 

bovine pancreas) and 12.5 mg RNase Type III (from bovine pancreas). Tissues were then 

incubated for 3 days in Solution C [50 mM Tris buffer with 1 v/v% tributyl phosphate 

(TBP), (pH 8.0)]. Following 3 x 30 min rinses in deionized water (dH2O) and 3 x 30 min 

rinses in PBS, tissues were incubated for 48 h in Tris buffer [50 mM tris buffer, (pH 9.0)] 

with solutions replaced ~ every 12 h. Tissues were rinsed 3 x 30 min in dH2O and 3 x 

30 min in PBS prior to collection.  

Protocol 2: Biopsy-punched NP (2 mm x 2 mm) was subjected to 3 freeze-thaw cycles in 

either dH2O (2A) or Solution A (2B), with buffer replaced following each thaw cycle. Next, 

tissues were rinsed 3 x 30 min in dH2O and 3 x 30 min in PBS prior to 5 h incubation in 

SPB digest supplemented 15,000 U DNase Type II and 12.5 mg RNase Type III. Tissues 

were then incubated in 1 v/v% Triton X-100 in 50 mM tris buffer for 2 h. Tissues were 

rinsed 3 x 30 min in dH2O and 3 x 30 min in PBS prior to collection. 

Protocol 3: Biopsy punched NP (2 mm x 2 mm) was subjected to 1 freeze-thaw cycle in 

dH2O. Tissues were then split equally into three treatment groups: 5 h incubation in SPB 

digest supplemented with 15,000 U DNase Type II and 12.5 mg RNase Type III (3A), 2 h 

incubation in SPB digest supplemented with 15,000 U DNase Type II and 12.5 mg RNase 

Type III (3B), and 2 h incubation in PBS supplemented with 15,000 U DNase Type II and 

12.5 mg RNase Type III (3C). Tissues were rinsed 3 x 30 min in PBS prior to collection. 

2.3 Characterization of decellularized tissues 

2.3.1 Histological analyses 

Native NP and decellularized nucleus pulposus (DNP) sampled at specified stages of 

decellularization were fixed overnight in 4% paraformaldehyde (PFA). Following standard 

histological processing (Robarts Molecular Pathology Laboratory, London ON), samples 

were embedded in paraffin and sectioned (7 μm sections) using a Leica RM2235 

microtome (Leica Biosystems, Concord, ON, Canada). Serial sections were deparaffinized 

and stained used standard methods for safranin-O/fast green or toluidine blue to visualize 

glycosaminoglycan (GAG), Masson’s trichrome or picrosirius red to visualize collagen, 

and DAPI using fluoroshield mounting medium (ab104139, Abcam) to visualize cell nuclei 

within the tissues. Stained tissue sections were imaged using a Leica DM1000 microscope 
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with Leica Application Suite software. Fluorescent images were acquired using a Zeiss 

Imager M2 microscope (Zeiss Canada, Toronto, ON, Canada). 

2.3.2 Scanning electron microscopy 

Native NP and DNP samples were frozen at -80°C overnight and lyophilized using a 

Labconco Freezone 4.5 lyophilizer (Labconco, Kansas City, MO, United States) for 72 h. 

Lyophilized samples of native NP and DNP (2 mm x 2 mm biopsy punch samples) were 

submerged in liquid nitrogen and cryofractured. Samples were then collected in glass vials 

and stored for future use under a desiccator. Prior to imaging, samples were coated with 

osmium and visualized using a LEO1530 scanning electron microscope (Nanofabrication 

facility, Western University). 

2.3.3 Preparation of cryomilled ECM particles 

Native NP and DNP samples were lyophilized as described above. The lyophilized tissues 

were transferred into Retsch 25 mL cryo-milling grinding jars with two 10 mm stainless 

steel milling balls. The sealed chambers were immersed in liquid nitrogen for 3 min, and 

then milled for 3 min at 30 Hz (Retsch Mixer Mill MM 400 milling system). This cycle 

was repeated three times and the resulting particles were stored within a desiccator for 

future use, as previously reported148. 

2.3.4 Biochemical analyses 

Ten mg of each lyophilized cryomilled sample was digested in 1 mL of proteinase K 

digestion buffer (0.2 mg/mL in Tris-EDTA (TE) buffer) overnight at 56°C under agitation 

(1200 rpm) and sonicated (3 x 1 sec) using the Sonic Dismembrator model 100 (Fisher 

Scientific) 1 h prior to thermal enzyme deactivation (92°C for 5 min under agitation).  

Dimethylmethylene blue assay: Proteinase K-digested samples were diluted (1:30) in 

1% bovine serum albumin (BSA) in PBS and assayed for sulphated glycosaminoglycan 

(sGAG) content using the dimethylmethylene blue (DMMB) dye binding assay, as 

previously reported149. Briefly, sGAG standards were prepared from chondroitin sulfate 

sodium salt (Sigma C-6737, 4°C) (10 mg/mL of 1% BSA), and an 8-point standard curve 

was prepared by serial dilution, with a starting concentration of 250 μg/mL in 1% BSA. 

Ten μL of each sample and standard were combined with 200 μL of DMMB reagent 
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(0.016 mg/mL in 0.2% formic acid (pH 5.3)) in technical triplicates, and the absorbance 

was read at 525 nm using the BMG LABTECH CLARIOstar® microplate reader. GAG 

concentrations of samples were determined based on the standard curve, and reported as 

µg of sGAG/mg of tissue dry weight. 

Hydroxyproline assay: Proteinase K-digested samples were hydrolyzed in 12 M 

hydrochloric acid for 24 h at 110°C, neutralized by the addition of 5.7 M sodium hydroxide, 

and centrifuged (400 x g, 1 min). Activated charcoal was added (25 mg/mL), samples were 

vortexed, centrifuged (10,000 x g, 5 min) and the supernatant was collected to assess 

collagen content using the hydroxyproline assay, as previously described149. Briefly, 

samples were diluted (1:80) in deionized water and standards were prepared from a stock 

solution of hydroxyproline (100 μg/mL in deionized water). An 8-point standard curve was 

prepared by serial dilution, with a starting concentration of 16 µg/mL in deionized water. 

Fifty μL of each standard and sample were pipetted into a 96-well plate in triplicates and 

50 μL of chloramine-T (0.05 M) was added. Samples were mixed and allowed to incubate 

at room temperature for 20 min. Fifty μL of perchloric acid (3.15 M) was then added to 

each well, and the samples were mixed and incubated at room temperature for 5 min. 

Finally, 50 μL of Ehrlich’s reagent (200 mg/mL of 4-dimethylaminobenzaldehyde in 2-

methoxyethanol) was added, mixed and incubated at 60°C for 20 min. The plate was cooled 

at 4°C for 5 min, then read at an absorbance of 560 nm using the CLARIOstar® microplate 

reader. Hydroxyproline concentrations of samples were determined based on the standard 

curve, and reported as µg of hydroxyproline/mg of tissue dry weight. 

PicoGreen assay: Samples used for the Quant-iT™ PicoGreen® double stranded DNA 

(dsDNA) assay were prepared according to the manufacturer’s instructions for the DNeasy 

Blood & Tissue Kit (Qiagen, Hilden, Germany). The PicoGreen assay was performed 

according to manufacturer’s instructions. Briefly, standards were prepared from λ-DNA 

(100 µg/mL of TE buffer) provided in the Quant-iT™ kit, and an 8-point standard curve 

was prepared by serial dilution with a starting concentration of 250 ng/mL in TE buffer. 

Fifty μL of each sample and standard were combined with 150 μL of Quant-iT™ reagent 

(1:200 dilution) in technical triplicates, and absorbance was read at 520 nm using the 

CLARIOstar® microplate reader. DNA concentrations of samples were determined based 

on the standard curve, and reported as ng of dsDNA/mg of tissue dry weight. 
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2.3.5 Particle size distribution 

Cryomilled DNP and bovine tendon collagen (COL) (Sigma-Aldrich) particles were 

independently sieved through a 125 μm stainless steel mesh and collected on a 45 µm mesh 

to remove larger particles and aggregates. This size range was selected based on previous 

work showing that it was favourable for promoting adipogenesis in adipose-derived 

stem/stromal cells encapsulated within MCS + decellularized adipose tissue (DAT) 

hydrogel constructs140. The particle size distributions were analyzed using a Malvern 

Mastersizer 2000 (Malvern Instruments Ltd., Worcestershire, United Kingdom). For each 

sample, ~100 mg of lyophilized ECM particles were hydrated in PBS and analyzed 

according to the manufacturer’s instructions.  

2.4 Composite hydrogel fabrication and characterization 

2.4.1 Methacrylation of chondroitin sulfate 

Chondroitin sulfate (CS) was methacrylated to enable hydrogel formation, as previously 

described139. Briefly, CS was reacted with methacrylic anhydride to form O-methacrylate 

chondroitin sulphate (Fig. 2.1). 

 

 

Figure 2.1: Chemical structure of chondroitin sulphate before and after 
methacrylation using methacrylic anhydride at pH ~ 10 for 1 hour at room 
temperature. 

In brief, 200 mg of CS salt (LKT Laboratories Inc., MN, United States) was dissolved in 

1 mL of 0.2 M sodium phosphate monobasic buffer (NaH2PO4), the pH was adjusted to 

~10, and 60 µL of methacrylic anhydride (Sigma-Aldrich) was added dropwise with 
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continuous stirring (700 rpm). The reaction was allowed to proceed for 1 h at room 

temperature with the pH maintained at 10, using 3 M sodium hydroxide. The product was 

precipitated by the addition of 10 mL of absolute ethanol. Excess solvent was decanted, 

and the precipitate was dissolved in 10 mL of deionized water. The solution was then 

transferred to a 3.5 kDa MWCO dialysis membrane (Spectra/Por) and dialyzed against 4 L 

of deionized water for 72 h, with solvent changes every 8 h. Throughout, the sample was 

protected from light to avoid crosslinking. Following dialysis, the methacrylated 

chondroitin sulphate (MCS) was neutralized using 3 M sodium hydroxide, and snap frozen 

in liquid nitrogen. The samples were lyophilized for 72 h and proton-nuclear magnetic 

resonance (1H NMR) was performed on the Inova 600 NMR spectrometer to confirm the 

targeted degree of methacrylation (17-20%141) was achieved. The samples were stored 

under nitrogen gas, protected from light and moisture at -20°C until future use. 

2.4.2 Fabrication of composite MCS ± DNP/COL scaffolds 

The composite scaffolds were fabricated based on previously-established methods139. 

Briefly, MCS was disinfected by UV exposure for 30 min in a biological safety cabinet. 

Cryomilled DNP and COL particles were decontaminated with an overnight incubation in 

70% ethanol, and hydrated with 3 x 30 min washes in PBS. The pre-polymer solutions 

were then made by dissolving the MCS in PBS (20 w/v%), with the addition of Irgacure 

2959 (10 w/v%), with or without cryomilled DNP or COL particles (5 w/v%). U-CH1 cells 

(passage 2-3 post thaw) were resuspended in chordoma media (IMDM/RPMI 4:1 with 10% 

FBS (Invitrogen, Life Technologies)) to obtain 10 x 106 cells/mL of final gel volume. The 

final gel volume consisted of 80% pre-polymer solution and 20% cell suspension. The 

solution was stirred with an 18G needle for 45 sec and immediately transferred to a 1 mL 

sterile syringe mold and photo-crosslinked by UV exposure (365 nm at an intensity of 12 

mW/cm2) for 2 min on each side of the syringe. The molds used to generate scaffolds were 

fabricated from 1 mL slip-tip syringes, cut cross-sectionally to remove the bore of the 

syringe, with a second plunger added to the cut end. Following crosslinking, the gel was 

extruded from the syringe and cut into individual 20 μL hydrogel scaffolds. The scaffolds 

were then transferred to cell culture inserts (Greiner Bio-one, Germany) within 12-well 

tissue culture plates. The gels were rinsed (2 x 15 min) with chordoma media, and the 

scaffolds were cultured in chordoma media for in vitro studies at 37°C with 5% CO2. 



www.manaraa.com

27 

 

2.4.3 Gel content analysis 

Single-phase (i.e. no ECM) and composite MCS hydrogel scaffolds were synthesized as 

described above (section 2.4.2) without U-CH1 cells, and with dH2O in place of PBS. 

Immediately following crosslinking, gels were snap-frozen in liquid nitrogen and 

lyophilized for 24 h. The initial dry mass (m1) was recorded and the samples were rinsed 

in 10 mL of dH2O for 3 x 3 h. The samples were then snap-frozen and lyophilized again 

for 24 h, and the final dry mass (m2) was recorded. The following equation was used to 

calculate gel content: 

Gel	content	(%) = -
𝑚/

𝑚0
1 × 100 

2.4.4 Bulk compression testing 

The single-phase and composite MCS hydrogel scaffolds were incubated in PBS at 37°C 

overnight prior to mechanical testing. The height and diameter of each scaffold was 

measured using calipers immediately before testing. Unconfined bulk compression testing 

was perform using the UniVert system (CellScale Biomaterials Testing, Waterloo, ON) 

with a 0.5 N load cell in an immersion bath containing PBS maintained at 37 °C. Sandpaper 

sheets were affixed to the UniVert platens by double-sided tape, and the samples were 

placed between the sheets to prevent the gel from slipping. Samples were pre-conditioned 

for 2 cycles of 10% strain at a rate of 0.05%/s. Cyclic compression testing was then 

performed for 4 cycles, at the same strain and rate parameters150. Nominal stress was 

calculated from the applied force divided by the initial cross-sectional area of each sample. 

Strain values of 4% and 10% were used as boundary conditions from the linear region of 

the nominal stress-strain curve to estimate the Young’s modulus.  

2.5 Cell characterization 

2.5.1 Cell culture 

U-CH1 cells143 originally obtained from Dr. Michael Kelley (Duke University, North 

Carolina, United States) were maintained in monolayer on 0.1% gelatin-coated tissue 

culture plastic plates in chordoma media at 37°C with 5% CO2. Cells were enzymatically 

dissociated with 0.25% trypsin (Gibco, Life Technologies) when then reached 80-90% 

(1) 
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confluency, and plated at a ratio of 1:2-1:3 for cell expansion. For all cell-encapsulated 

hydrogel studies, cells were maintained for 2-3 passages prior to encapsulation. All cell 

studies were performed with four biological replicates (N=4). 

2.5.2 Cell viability in hydrogel scaffolds 

The LIVE/DEAD® Viability/Cytotoxicity Assay (Invitrogen) enables the simultaneous 

visualization of live and dead cells through the use of calcein AM (494 nm/517 nm) and 

ethidium homodimer (EthD-1) dyes (528 nm/617 nm), respectively. This assay was used 

to qualitatively evaluate viability and retention of U-CH1 cells within MCS±DNP/COL 

scaffolds following 24 h, 3 days and 7 days of in vitro culture. For each timepoint, the cell-

seeded scaffolds were rinsed in sterile 5% FBS in PBS solution, then incubated in dye 

solution (4 μM EthD-1 and 2 μM Calcein AM in 5% FBS in PBS) for 30 min at 37°C151. 

Scaffolds were then washed in sterile 5% FBS in PBS solution and imaged using a Zeiss 

LSM800 Confocal Microscope with Airyscan. The tiling feature was used to capture and 

stitch together images to visualize the entire cross-sectional area of the scaffolds. For each 

scaffold, 4 depths were imaged starting at the surface of the gels, separated by 50 μm. 

2.5.3 Gene expression analyses 

For each group (MCS±DNP/COL) following 24 h or 3 days in culture, three 20 µL cell-

seeded hydrogel scaffolds were pooled together in 1 mL of PureZOL. Samples were 

mechanically dissociated using a microtube pestle and sonicated 10 x 1 sec for three cycles. 

Total RNA was extracted using the Aurum Total RNA Fatty and Fibrous Tissue kit (Bio-

Rad), according to manufacturer’s instructions. RNA concentrations were determined 

using a Nanodrop 1000 spectrophotometer (Thermo Scientific), and 275 ng of 

RNA/sample was used for cDNA synthesis using the iScript™ cDNA Synthesis Kit (Bio-

Rad). Controls with no reverse transcriptase were also prepared for each sample. Gene 

expression was assessed by real-time qPCR using the BioRad CFX-384 system. All 

reactions were run in triplicates, with each reaction containing 312.5 nM of forward and 

reverse primers, and 2x SsoFast Evagreen Supermix (Bio-Rad). PCR primers were 

previously validated for efficiency and specificity (primer sequences provided in Table 

2.1). The following 2-step RT-PCR protocol was used: initial denaturing at 95°C for 2 min, 

denaturing at 95°C for 10 sec and annealing/elongation at 60ºC for 30 sec, repeated for 45 
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cycles, followed by a melt curve. Transcript levels were analyzed using the ΔΔCT method, 

normalized to the geometric mean of the housekeeping genes GUSB and GAPDH. No-

reverse transcriptase controls were run for all primer pairs to detect genomic 

contamination. 

Table 2.1: RT-qPCR Primer Sequences. 

Gene Primer Sequence (5’ to 3’) 
Brachyury (T) FWD – TGAGACCCAGTTCATAGCGG 

REV – TGCTGGTTCCAGGAAGAAGC 

CD24 
 

FWD – CTCCTACCCACGCAGATTTATTC 
REV – AGAGTGAGACCACGAAGAGAC  

FOXA1 
 

FWD – GGTGGCTCCAGGATGTTAGG 
REV – TGTTCCAGTCGCTGGTTTCA 

Aggrecan (ACAN) 
 

FWD – TGAGGAGGGCTGGAACAAGTACC 
REV – GGAGGTGCTAATTGCAGGGAACA  

SOX9 FWD – AGCGAACGCACATCAAGAC 
REV – CTGTAGGCGATCTGTTGGGG  

Collagen type I (COL1A1) 
 

FWD – AAGAGGAAGGCCAAGTCGAG 
REV – CACACGTCTCGGTCATGGTA  

Collagen type II (COL2A1) FWD – CCAGATGACCTTCCTACGCC 
REV – TTCAGGGCAGTGTACGTGAAC  

GUSB 
 

FWD – ACGCAGAAAATATGTGGTTGGA 
REV – GCACTCTCGTCGGTGACTGTT  

GAPDH FWD – GAGTCAACGGATTTGGTCGT 
REV – GACAAGCTTCCCGTTCTCAG 

 

2.6 Statistical analyses 
All numerical data are presented as mean ± standard deviation (SD), unless noted 

otherwise. All statistical analyses were performed using GraphPad Prism 7 Software 

(GraphPad Software, San Diego, CA). A Kolmogorov–Smirnov test was performed to 

compare the size distributions of the DNP and COL particles. Data from the biochemical 

analyses was analyzed by one-way ANOVA with a Tukey’s post-hoc comparison of the 

means. The gene expression data was analyzed by two-way ANOVA with a Tukey’s post-

hoc comparison of the means. Differences of p < 0.05 were considered statistically 

significant unless noted otherwise. 
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Chapter 3  

3 Results 

3.1 Development of a protocol to decellularize bovine nucleus 
pulposus 

The first phase of the project focused on the systematic development of a decellularization 

protocol for bovine nucleus pulposus (NP), with the goal of enhancing cell extraction while 

preserving glycosaminoglycan (GAG) and collagen content. While many iterations of 

treatment testing were performed (Appendix; Supplemental Table 1), the following body 

of work details three protocols that were key in informing the development of a reliable 

and reproducible bovine NP decellularization protocol. 

The initial decellularization protocol was based on an established 10-day method in the 

Flynn Lab for porcine auricular cartilage decellularization (Fig. 3.1), which was adapted 

from published methods for the decellularization of human nasoseptal cartilage147. Whole 

NP samples were cut into quarters and treated with the 10-day decellularization protocol, 

summarized in Fig. 3.1A. Tissue samples were collected for qualitative assessment by 

histology immediately following dissection and after rinsing following the final 

decellularization treatment step (3 x 30 min in deionized water (dH2O) and 3 x 30 min in 

phosphate buffered saline (PBS)). Safranin-O/fast green staining for GAG revealed a 

notable loss of GAG in the DNP as compared to the native NP samples (Fig. 3.1B). 

Masson’s trichrome staining revealed more intense collagen staining in the DNP, 

potentially due to collagen fibers being more accessible as a result of substantial GAG loss. 

DAPI staining confirmed successful removal of nuclei in the processed tissues. 

In an attempt to preserve more GAG, the subsequent protocol was reduced to three main 

steps: mechanical disruption by freeze-thaw (F/T) cycles in hypotonic solutions to lyse cell 

membranes, enzymatic digestion of nuclear content, and detergent washes to solubilize and 

remove cellular and nuclear debris.  
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Figure 3.1: Histological analyses of bovine NP tissue processed with decellularization 
Protocol 1. A) Protocol overview, with sampling points shown in colour. Acronyms: F/T 
= freeze-thaw cycles, Tris = tris (hydroxymethyl)aminomethane, EDTA = 
ethylenediaminetetraacetic acid, SPB = Sorensen’s phosphate buffer, TBP = tributyl 
phosphate. B) Representative   safranin-O/fast green staining of GAG (red) and collagen 
(blue-green), Masson’s trichrome staining of collagen (blue), and DAPI nuclear staining 
(white), (n=3, serial sections throughout the tissue sample). Scale bars for safranin-O/fast 
green and Masson’s trichrome = 200 µm. Scale bars for DAPI stain = 100 µm. 
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The importance of mechanical disruption by F/T cycles was established in a supplemental 

protocol (Appendix; Supplemental Fig. 1), where incubation in hypotonic 10 mM tris 

(hydroxymethyl)aminomethane (Tris) + 5 mM ethylenediaminetetraacetic acid (EDTA) 

buffer alone did not effectively disrupt the cells, resulting in the presence of abundant 

nuclei throughout the processed tissues following the final treatment step. 

Decellularization protocol 2, summarized in Fig. 3.2A, was designed to compare the effects 

of F/T cycles in two hypotonic solutions: dH2O and 10 mM Tris + 5 mM EDTA buffer. 

The NP was cut into 2 mm x 2 mm pieces to increase the surface area treated and improve 

uniformity in decellularization. Tissue samples were collected for assessment by histology 

and biochemical assays immediately following dissection and after rinsing (3 x 30 min in 

dH2O and 3 x 30 min in PBS) following the final decellularization treatment steps. 

Toluidine blue staining was performed in place of safranin-O/fast green staining as it was 

found to better visualize GAG content within the processed tissues and showed a better 

correlation with the quantitative results of sulphated GAG (sGAG) content measured using 

the DMMB assay. Toluidine blue staining in Fig. 3.2B revealed more intense staining in 

the decellularized nucleus pulposus (DNP) generated with Protocol 2A as compared to 

Protocol 2B, suggesting that F/T cycles in dH2O better preserved GAG. Quantification of 

sGAG content by the DMMB assay (Fig. 3.2C) corroborated these qualitative findings, 

showing slightly enhanced sGAG retention in Protocol 2A as compared to Protocol 2B 

(~17% versus ~14% retention). Collagen distribution visualized by Masson’s Trichrome 

staining revealed similar patterns in the native NP and DNP samples from both treatment 

groups (Fig. 3.2B). Quantitative analysis of collagen content through the hydroxyproline 

assay suggested an enrichment in collagen content relative to tissue dry weight in the 

processed tissues, consistent with the loss of GAG (Fig. 3.2C). Although nuclei visualized 

by DAPI staining appeared qualitatively reduced in both treatment groups (Fig. 3.2B), 

quantification of dsDNA revealed that F/T cycles in dH2O more effectively reduced 

nuclear content as compared to F/T cycles in the 10 mM Tris + 5 mM EDTA buffer (~77% 

versus ~61% reduction). Interestingly, the DNA content was similar in Protocol 2A 

following both the DNase/RNase and Triton X-100 detergent extraction treatment steps 

(Fig. 3.2C) (~79% versus ~77% reduction).       
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Figure 3.2: Histological and quantitative analyses of bovine NP tissue processed with 
decellularization Protocol 2. A) Protocol overview, with sampling points shown in 
colour. Acronyms: F/T = freeze-thaw cycles, Tris = tris (hydroxymethyl)aminomethane, 
EDTA = ethylenediaminetetraacetic acid, SPB = Sorensen’s phosphate buffer. B) 
Representative Toluidine blue staining of GAG (purple), Masson’s trichrome staining of 
collagen (blue), and DAPI nuclear staining (white) (n=3, serial sections halfway through 
the tissue). Scale bars = 200 μm. C) Quantitative biochemical analysis of the processed 
DNP and native tissues including sGAG content as determined by the DMMB assay, 
hydroxyproline content as a measure of total collagen content by the hydroxyproline assay, 
and dsDNA content as determined by the PicoGreen assay (n=3, N=1 for all assays). Data 
are presented as mean ± SD. 
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Given that the detergent treatment reduced the GAG content without enhancing DNA 

extraction, the subsequent decellularization protocol excluded the Triton X-100 detergent 

extraction (Fig. 3.3). Since follow up testing revealed that GAG was lost with each F/T 

cycle (Appendix; Supplemental Fig. 2), the testing in Protocol 3 included only one F/T 

cycle. Additionally, in a final effort to preserve GAG, the effects of reducing the duration 

of the enzymatic digestion from 5 h (Protocol 3A) to 2 h (Protocol 3B) and changing the 

incubation solution to PBS (Protocol 3C) were explored (Fig. 3.3A). 

Toluidine blue staining (Fig. 3.3B) and sGAG quantification (Fig. 3.3C) both indicated 

that Protocol 3B and 3C were more effective in preserving GAG as compared to Protocol 

3A. Collagen distribution was evaluated with Picrosirius red staining, as it was found to 

better visualize the collagen fibers within the processed tissues as compared to the faint 

staining observed with Masson’s trichrome. The Picrosirius red staining suggested that the 

collagen structure was qualitatively similar between all treatment steps evaluated and the 

quantitative results showed an increasing trend in relative collagen content following 

treatment, as seen in our previous protocols (Fig. 3.2C). Although DAPI staining revealed 

a qualitatively greater number of residual nuclei within tissues processed with Protocols 

3B and 3C as compared to Protocol 3A, the quantitative analysis showed a marked 

reduction in dsDNA content of Protocols 3A and 3B, as compared to native NP.  

Since Protocols 3A and 3B appeared most promising, the treatments were repeated for a 

minimum of three biological replicates each (N=3) to validate the efficacy of both 

protocols. Statistical analyses were performed on the biological replicates to compare 

Protocols 3A and 3B. Although there was a significant reduction in sGAG content from 

native NP in both treatment groups, Protocol 3B was shown to retain ~36% sGAG as 

compared to ~28% in Protocol 3A. Collagen quantification results were similar between 

Protocols 3A and 3B, however there was greater variability in Protocol 3A, which may be 

attributed in part to the native tissue source. In particular, the data points at the high range 

in terms of collagen content for Protocol 3A correlated to the samples that had higher 

sGAG content in the native tissues and consequently showed greater relative loss of sGAG 

during processing. Both Protocols 3A and 3B had a notable reduction in dsDNA content, 

with ~88% and ~89% loss of dsDNA, respectively.  
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Figure 3.3: Histological and quantitative analyses of bovine NP tissue processed with 
decellularization Protocol 3. A) Protocol overview, with sampling points shown in 
colour. Acronyms: F/T = freeze-thaw cycle, SPB = Sorensen’s phosphate buffer, PBS = 
phosphate buffered saline. B) Representative Toluidine blue staining of GAG (purple), 
Picrosirius red staining of collagen (red/orange), and DAPI nuclear staining (white) (n=3, 
serial sections halfway through the tissue; Native NP: N=7, Post-1 F/T treatment: N=3, 
Protocol 3A - Complete: N=3-4, Protocol 3B - Complete: N=5, Protocol 3C - Complete: 
N=1). Scale bars = 200 μm. C) Quantitative biochemical analysis of the processed DNP 
and native tissues including sGAG content as determined by the DMMB assay, 
hydroxyproline content as a measure of total collagen content by the hydroxyproline assay, 
and dsDNA content as determined by the PicoGreen assay (n=3 for all assays; Native NP: 
N=7, Post-1 F/T treatment: N=3, Protocol 3A - Complete: N=3-4, Protocol 3B - Complete: 
N=5, Protocol 3C - Complete: N=1). Data are presented as mean ± SEM. * = p<0.05, ** = 
p<0.005. One-way ANOVA with Tukey’s post-hoc correction was performed to compare 
all groups, excluding Protocol 3C - Complete (N=1). 
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Based on enhanced GAG retention with similar efficacy in terms of cell extraction, 

Protocol 3B was selected as the ‘final’ decellularization protocol and was used for all future 

studies. 

The scanning electron microscopy (SEM) images (Fig. 3.4) revealed an intricate mesh-like 

ECM ultrastructure in the native bovine NP that was qualitatively preserved in the DNP 

generated with Protocol 3B.  

 

 

Figure 3.4: Scanning electron microscopy (SEM) images visualizing the ECM 
ultrastructure of the native bovine NP and DNP generated with Protocol 3B. Scale 
bars = 1 µm. 
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3.2 Characterization of cryomilled decellularized nucleus 
pulposus and bovine tendon collagen particles 

The DNP generated with Protocol 3B (pooled from N=4) and commercially-sourced 

bovine tendon collagen (COL) controls were lyophilized and cryomilled to obtain ECM 

particles for use in the fabrication of the methacrylated chondroitin sulphate (MCS) ± 

DNP/COL constructs. The volume fraction (Fig. 3.5A) and size distribution (Fig. 3.5B) of 

the DNP and COL particles were assessed using a Malvern Mastersizer 2000. While a 

range of particle sizes was observed, the majority of particles were in the expected size 

range of 45 μm to 125 μm. The Kolmogorov–Smirnov test with p<0.05 revealed that the 

size distributions of DNP and COL particles were not significantly different, eliminating 

differences in particle size as a potential confounding variable. 

 

 

Figure 3.5: Characterization of the size distribution of the DNP and COL cryomilled 
particles. A) Volume fraction and B) particle size distribution of the cryomilled DNP and 
COL particles sieved between 45 µm and 125 µm stainless steel meshes. There was no 
significant difference in the particle size distributions between the two ECM sources as 
determined by Kolmogorov–Smirnov test with p<0.05. 

 

3.3 Characterization of methacrylated chondroitin sulphate 
Following MCS synthesis, dialysis and lyophilization, successful methacrylation of 

chondroitin sulphate was confirmed by 1H NMR spectroscopy (Fig. 3.6). Peaks at 6.03 

ppm (i.) and 5.59 ppm (ii.) on the 1H NMR correspond to protons on the vinyl group, while 

the peak at 1.79 ppm (iii.) corresponds to the protons on the methyl group of the 



www.manaraa.com

38 

 

methacrylate. The peak at 1.89 ppm (iv.) corresponds to the N-acetyl residues from the 

starting CS material. Integration of protons revealed that the targeted degree of 

methacrylation (17-20%) was achieved, with 18% in this specific batch of polymer. 

Additionally, the absence of extra unidentified peaks indicates that the polymer is free of 

contaminants. 

 

 

Figure 3.6: 1H NMR of MCS with key peaks on the spectrum labelled and correlated 
to the chemical structure. 

 

3.4 Hydrogel physical characterization 
Following the fabrication of the MCS ± DNP/COL hydrogel constructs via UV 

crosslinking, the gels were macroscopically similar in appearance, but varied somewhat in 

colour (Fig. 3.7A). Single-phase MCS hydrogels were colourless, whereas MCS+DNP and 

MCS+COL constructs were off-white and white in colour, respectively. While handling 
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the gels, single-phase MCS constructs were qualitatively more brittle than the MCS + 

DNP/COL constructs. No differences were noted in the dimensions of the hydrogels 

between the three groups following swelling for samples that were prepared for bulk 

compression testing.  

Gel content analysis was performed as a measure of the crosslinking efficacy of the 

hydrogels. In comparing the three hydrogel groups, there was no significant difference in 

gel content (Fig. 3.7B), with values of 82.2 ± 5.1%, 80.0 ± 5.8%, and 79.9 ± 5.4% for the 

MCS+DNP, MCS+COL, and single-phase MCS constructs, respectively. These findings 

indicate that integration of the DNP and COL at 5 w/v% did not compromise the overall 

formation of the hydrogel network. Unconfined bulk compression testing was performed 

to compare the Young’s moduli of the three hydrogel groups (Fig. 3.7C). The MCS+DNP, 

MCS+COL, and single-phase MCS constructs showed moduli of 42.1 ± 8.6 kPa, 

35.5 ± 7.9 kPa, and 53.7 ± 9.7 kPa, respectively. The results showed a significant 

difference between the MCS+COL and single-phase MCS constructs, suggesting that the 

incorporation of the COL may have introduced defects or inhomogeneities into the polymer 

network. No significant differences were found between other groups. 
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Figure 3.7: Physical characterization of MCS ± DNP/COL hydrogel constructs. A) 
Macroscopic images of MCS+DNP, MCS+COL and single-phase MCS gels. Scale bar = 
1 cm. B) Gel content analysis, showing no significant differences between the groups 
(n=5). C) Unconfined bulk compression testing showing that the MCS+COL composites 
had a significantly lower Young’s modulus than the single-phase MCS hydrogels, with no 
significant differences between the other groups as determined by a one-way ANOVA with 
a Tukey’s post-hoc comparison of means (n=5). * = p<0.05. 

 

3.5 Viability and retention of U-CH1 cells encapsulated within 
MCS ± DNP/COL constructs 

The LIVE/DEAD® assay with confocal imaging was used to qualitatively assess the 

viability and retention of U-CH1 cells within MCS ± DNP/COL constructs following 24 h, 

3 days and 7 days of in vitro culture (Fig. 3.8). Images were acquired at a maximum depth 

of ~200 µm, limited by the focal length capability of the microscope. Initially, at the 24 h 

timepoint, the viability and retention of U-CH1 cells within all of the constructs appeared 

similar. At the 3 and 7 day timepoints, the MCS+DNP and MCS+COL groups showed 

qualitatively enhanced cell viability and retention as compared to the single-phase MCS. 

At both 3 and 7 days, there was noticeable cell death and a marked decrease in the cell 

density in the U-CH1 cells encapsulated within single-phase MCS. Interestingly, 
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preliminary studies investigating the viability of U-CH1 cell cultured within thermally-

crosslinked MCS ± DNP/COL constructs (Appendix; Supplemental Fig. 3) showed 

similar trends, with a qualitatively higher cell density observed in the MCS+DNP 

constructs at 7 and 14 days, and a dramatic reduction in the presence of viable cells in the 

single-phase MCS hydrogels over time. 

 

 

Figure 3.8: Representative confocal microscopy images showing LIVE/DEAD® 
staining of U-CH1 cells encapsulated within the MCS ± DNP/COL hydrogel 
constructs through UV crosslinking and cultured in vitro over 7 days. Live cells were 
stained with calcein-AM (green) and dead cells were stained with ethidium homodimer-1 
(red). The DNP and COL particles appear blue due to ECM autofluorescence. Images were 
captured at a depth of ~100 µm. Scale bars = 500 µm. 
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3.6 Gene expression of U-CH1 cells encapsulated within 
MCS+DNP/COL constructs 

A panel of notochord-associated (T and CD24), NP-associated (FOXA1 and SOX9), and 

ECM (ACAN, COL2A1 and COL1A1) genes was quantified in U-CH1 cells encapsulated 

in the MCS+DNP and MCS+COL constructs, as well as U-CH1 cells maintained on 

standard tissue culture plastic (TCP) as control following 24 h and 3-days in culture using 

RT-qPCR (Fig. 3.9). The 7-day timepoint and single-phase MCS groups were not assessed 

due to low RNA yields.  

U-CH1 cells encapsulated within the MCS+DNP hydrogels showed a significant decrease 

in T (3d) and CD24 (24 h and 3d) expression as compared to the TCP controls, associated 

with a significant increase in SOX9 (3d) expression compared to the TCP controls. 

Following 3 days in culture, cells within the MCS+DNP group showed a significant 

decrease in expression of the ECM gene COL2A1 (3d) compared to the TCP controls, 

accompanied by decreased expression of ACAN, (mRNA levels falling below detection in 

two of the three biological replicates). There were no significant differences in FOXA1 or 

COL1A1 expression in U-CH1 cells cultured in MCS+DNP hydrogels, as compared to the 

TCP controls.  

Although the U-CH1 cells within the MCS+COL hydrogels showed no significant 

differences in T, SOX9, or COL1A1 expression compared to the TCP controls, there was a 

significant decrease in ACAN (3 d; and from 24 h to 3 d) and CD24 (24 h and 3d; with a 

significant increase from 24 h to 3 d) expression, a significant increase in FOXA1 

expression (3 d, and from 24 h to 3 d), and a significant decrease in COL21 expression 

(24 h and 3 d), compared to the TCP controls. 
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Figure 3.9: RT-qPCR analysis of gene expression of U-CH1 cells encapsulated within 
MCS+DNP/COL hydrogels and cultured in vitro for 24 h or 3 days. Analysis was 
performed on T and CD24 as markers of a notochord-like phenotype, FOXA1 and SOX9 as 
markers of an NP-like phenotype, and ACAN, COL2A1 and COL1A1 as markers of NP 
ECM production. Dashed lines indicate levels in control cells cultured using standard 
protocols on tissue culture plastic (TCP). Relative gene expression was calculated using 
the ΔΔCt method normalized to the geometric mean of the housekeeping genes GUSB and 
GAPDH, with U-CH1 cells cultured on TCP as control. Data are presented as mean ± SEM, 
N=3-4 (n=3-6 technical replicates averaged per biological replicate). * = p<0.05, ** = 
p<0.005, *** = p<0.0005, **** = p<0.0001. The ROUT method (Q=1%) was used to 
identify outliers prior to statistical analyses. One-way ANOVA with Tukey’s post-hoc 
correction was performed for groups within each timepoint. Welch’s t-test was performed 
to evaluate changes in gene expression within a group over time. ACAN expression for 
MCS+DNP at 3d was excluded from statistical analyses as two of the three biological 
replicates had no amplification. 
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Chapter 4  

4 Discussion 
Back pain is the most common cause of disability worldwide, with intervertebral disc 

(IVD) degeneration as the primary contributor in ~40% of cases1. Although the etiology of 

disc degeneration is not understood, it is believed to initiate in the central gel-like structure 

of the IVD, known as the nucleus pulposus (NP)9. Changes in the NP, such as decreased 

production of proteoglycans87,88 and other extracellular matrix (ECM) components87,  lead 

to a loss of hydration11, disc height, and overall impaired mechanical function91.  The IVD 

has a limited capacity for repair and there are currently no disease-modifying treatments 

for disc degeneration. As such, there is a growing interest in the design and application of 

biomaterials-based therapies targeting the NP to improve mechanical function by restoring 

disc height, and to establish a pro-regenerative microenvironment that supports delivered 

or endogenous cell populations for the regeneration of this tissue. Recognizing the role of 

the ECM in influencing cell function28,108, natural and synthetic scaffolds have been 

designed to mimic biochemical composition and/or biomechanical function of the native 

NP ECM. One especially promising approach to mimic the native tissue is to decellularize 

the NP tissue to obtain the NP ECM for use as a cell-instructive scaffold. 

Decellularization methods aim to remove cellular and nuclear content while preserving the 

ECM composition and ultrastructure. Since there are currently no standardized criteria to 

develop and characterize these materials, the bioactivity of the resulting scaffolds may vary 

greatly24. For each tissue type, decellularization protocols must be developed and refined 

based on the tissue-specific composition, structure and cellularity113. In general, 

decellularization treatments typically lyse cell membranes, and the cellular and nuclear 

components must be separated from the ECM, solubilized or digested, and removed from 

the tissue115. To date, efforts made to decellularize the NP have employed multiple 

detergents and harsh chemicals such as sodium dodecyl sulphate and deoxycholic acid119–

122,152–154. Although effective in reducing cell content, these treatments can alter the ECM 

structure, strip the tissues of cell-instructive soluble factors, and leave residues that can 

lead to cytotoxicity155. All treatments that decellularize tissues will also alter the ECM to 

some degree, impacting the innate bioactivity. With this in mind, the focus of this project 

was on the development of a reproduceable method with minimal processing that 
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effectively reduced cellular/nuclear content in the bovine NP, while preserving 

glycosaminoglycan (GAG) and collagen content, which are key ECM components within 

the native tissues. Following protocol establishment, the effects of the resulting 

decellularized NP (DNP) on cell viability, retention and differentiation were explored using 

NP progenitor-like cells encapsulated within a tunable 3-D hydrogel platform comprised 

of methacrylated chondroitin sulphate (MCS) that mimics the GAG-rich composition of 

the native NP64. 

The initial protocols tested employed the use of Triton X-100 and tributyl phosphate (TBP) 

detergents to aid in solubilizing fragmented cellular and nuclear content. Detergents have 

a hydrophilic head group and a hydrophobic tail that can solubilize amphiphilic cell 

membranes. Based on their hydrophilic head groups, detergents are separated into 

nonionic, zwitterionic, and ionic. Non-ionic detergents, such as Triton X-100, are gentler 

and may better preserve tissue structure and composition than zwitterionic and ionic 

detergents113. Zwitterionic detergents, such as TBP, are harsher than non-ionic detergents, 

but gentler than ionic detergents that are known to denature proteins and remove growth 

factors from the ECM113. The NP decellularization protocols in the literature to date117–

121,154,156 frequently use zwitterionic and ionic detergents to decellularize the tissues. While 

the efficacy of cell extraction using Triton X-100 has been variable with some tissue types, 

it is thought to maintain protein–protein interactions that are disrupted with the use of 

TBP113. As noted by the EDTA incubation, these interactions may be important in 

preserving GAG and the ECM structure in general. Since the NP ECM is not as dense as 

other tissues tested using Triton X-100, we selected this non-ionic detergent over TBP in 

our initial refinements of the protocols. Interestingly, in the decellularization treatments 

investigated in the current study, treatment with Triton X-100 detergent was found to strip 

the tissues of GAG without having a noticeable effect on DNA content. We postulate that 

at the enzymatic digestion step, the nuclei were fragmented and solubilized enough to 

extract these components from the ECM without the need of added detergents. Thus, the 

detergent wash step was omitted from the finalized decellularization protocol.  

The finalized 1-day detergent-free method involved one freeze-thaw cycle in hypotonic 

deionized water (dH2O), followed by a 2 h enzymatic digestion with DNase and RNase in 

Sorensen’s phosphate buffer (SPB). After validation with four independent biological 
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replicates, this protocol was found to consistently extract ~89% of double stranded DNA 

(dsDNA) while preserving ~36% sulphated GAG (sGAG), as compared to <14% sGAG in 

initial protocols tested. The collagen distribution was qualitatively preserved in the DNP, 

with a quantitative enrichment in collagen content relative to tissue weight in the processed 

tissues, consistent with the loss of GAG. This increase in relative collagen content has been 

previously noted in the quantification results of other groups decellularizing the NP118–

121,154.  

Although there was a substantial quantitative reduction in dsDNA content, the qualitative 

histological analysis revealed residual nuclei in the DNP tissues. The discrepancy in these 

results may be attributed in part to variability within NP samples from the different levels 

of IVDs, and between tissue donors. While the specific cellularity and ECM composition 

at various levels of IVDs in the spine have yet to be characterized, many groups recognize 

these parameters may vary depending on the specific tissue source. For example, in studies 

aiming to understand aging157,158, matrix homeostasis159 and degeneration of the discs160, 

the level of IVDs were stratified during analyses to account for potential source variations. 

Donor variability in the age and breed of the cattle are also recognized as possible 

contributing factors in the current study. The quantification of DNA and sGAG content in 

the native NP samples during protocol validation demonstrates this variability, with 

dsDNA content ranging from ~7-64 ng/mg dry tissue and sGAG content ranging from 

~128-425 µg/mg dry tissue in biological replicates. The sample pooling and tissue 

processing (i.e. lyophilization and cryomilling) in the biochemical analyses may have 

reduced sample variability as compared to the histological analyses, which looked at 

individual 2 mm x 2 mm NP samples. Nonetheless, our decellularization protocol 

consistently resulted in a reduction of DNA, while qualitatively preserving the intricate 

mesh-like ECM ultrastructure of the native bovine NP in the DNP.  

The first treatment step in the protocol involved mechanical disruption by a freeze-thaw 

cycle in a hypotonic solution to lyse cell membranes. Hypotonic solutions cause an influx 

of water into cells, exerting an osmotic stress that results in cell lysis113. In earlier protocols 

tested, incubation with agitation alone in a hypotonic solution (50 mM tris 

(hydroxymethyl)aminomethane (Tris) + 10 mM ethylenediaminetetraacetic acid (EDTA)) 

was found to be insufficient in lysing cell membranes in the NP tissues. Mechanical 
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disruption by freeze-thaw cycles in the same solution aided in cell lysis, likely making the 

nuclear content more accessible for enzymatic digestion in future steps. The 50 mM Tris + 

10 mM EDTA solution was also found to solubilize a substantial amount of GAG. EDTA 

is a divalent metal cation chelator that dissociates cells from the ECM by sequestering 

calcium. Although effective in dissociating cells from the matrix, EDTA can also 

destabilize protein-protein interactions dependent on calcium binding. This effect was 

postulated to result in the increased solubilization of GAG. In an effort to better preserve 

this important ECM component, dH2O was compared to 50 mM Tris + 10 mM EDTA as 

the hypotonic solution used for the freeze-thaw cycles. The quantification results revealed 

that dH2O was more effective in reducing dsDNA content (~77% versus ~61% reduction 

post-freeze-thaws), while better preserving GAG (~17% versus ~14% retention post-

decellularization). No noticeable differences in collagen distribution were visualized by 

histology, however there was a greater enrichment in collagen content in tissues processed 

with 50 mM Tris + 10 mM EDTA, as expected with the increased loss of GAG. Thus, 

dH2O was selected as the hypotonic solution in our decellularization protocol. In a final 

attempt to preserve more GAG at this step in the decellularization, the number of freeze-

thaw cycles were reduced from 3 to 1. Freeze-thaw cycles are thought to increase tissue 

porosity and induce cell lysis by ice crystal formation161. A decrease in the number of 

freeze-thaw cycles was found to better preserve GAG in the NP, while maintaining its 

efficacy in reducing cellular/nuclear content.  

The second treatment step in our protocol involved a 2 h enzymatic digestion with DNase 

and RNase in SPB, to fragment the cellular and nuclear content and remove these 

components from the NP ECM. DNase and RNase are endonucleases that hydrolyze 

deoxyribonucleotides and ribonucleotides, respectively. The activity of these enzymes can 

be reduced over time as lysed cells release natural protease inhibitors113. With this in mind, 

enzymatic digestion incubation times of 5 h and 2 h were compared. A qualitatively greater 

number of nuclei were visible by histology at 2 h as compared to 5 h; however, 

quantification revealed similar levels of dsDNA between both treatments. As mentioned 

earlier, the discrepancies between the histological and biochemical analyses may be in part 

due to donor and sample variability. The 2 h incubation also revealed a greater qualitative 

and quantitative preservation of GAG as compared to the 5 h incubation. There were no 

noticeable differences in collagen distribution, and quantification between the two 
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incubation times tested. Based on the quantitative data, the enzymatic digestion step was 

set at 2 h in the finalized decellularization protocol. In a final effort to reduce loss of GAG, 

SPB and phosphate buffered saline (PBS) were compared as the digestion incubation 

solutions. PBS is a commonly used buffer that has a pH, ion concentration and osmolarity 

that simulate physiological conditions and is thought to maintain tissues. The quantitative 

results revealed that enzymatic digestion performed in SPB had a greater reduction in 

dsDNA content as compared to those carried out in PBS. There were no noticeable 

differences in the quantitative retention of sGAG between the two treatment groups. 

Similarly, the collagen distribution and the enrichment in collagen content were similar 

between the two groups. The additional ions and their specific concentrations in the SPB 

(0.55 M sodium phosphate dibasic heptahydrate, 0.17 M potassium phosphate, 0.049 M 

magnesium sulphate heptahydrate) are postulated to increase enzyme activity as compared 

to the PBS. Thus, the enzymatic digestion step with DNase and RNase was performed in 

SPB for 2 h. 

In addition to the treatments discussed above, balancing the NP surface area exposed 

during incubations, standardizing the tissue-to-solution volume ratio and speed of agitation 

during incubation are important factors in the decellularization of the NP. A possible reason 

as to why previous methods required harsher treatments to effectively decellularize the 

tissues may be related to the surface area of the NP samples used prior to processing. 

Published protocols have maintained the original size of the native NP tissues117,118,121,154, 

used halved116 or 8 mm NP biopsied segments119, or milled the NP tissues120 prior to 

processing. Our finalized protocol sectioned the native NP into 2 mm x 2 mm pieces prior 

to treatment in order to improve the efficacy of the decellularization while maintaining a 

surface area that minimized GAG solubilization. Selecting a tissue-to-solution volume 

ratio of ~15 g of NP tissues/100 mL of solution in a 500 mL tub standardized the process 

and created a balance that reduced tissue aggregation. An incubation speed of 125 rpm was 

selected as higher speeds tested resulted in undesired aggregation of the NP tissue pieces, 

while lower speeds have been reported in the literature to be less effective in removing 

nuclei113. It is postulated that a combination of these factors contributed towards the 

successful decellularization with minimal treatments. 
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Since our protocol requires noticeably less tissue processing as compared to published 

methods, it was hypothesized that some easily solubilized bioactive components in the NP 

ECM may be preserved in our DNP. To investigate the cell-instructive potential of our 

material, cryomilled DNP was incorporated into in situ UV-crosslinking MCS hydrogels 

to create a tunable 3-D platform that mimics the native NP environment. The use of intact 

DNP does not allow for tuning of cell-cell and cell-ECM contact, which are known to play 

important roles in directing cell phenotype142. Although ~36% sGAG was preserved in the 

DNP in our finalized protocol, there was still a significant loss in GAG content from the 

native NP. Since chondroitin sulphate (CS) is the most abundant GAG in the NP ECM133, 

incorporating the DNP particles into MCS hydrogels was a way to structurally reintroduce 

this important component into a 3-D platform. CS is negatively charged and is capable of 

absorbing water and nutrients, and it has been shown to have anti-inflammatory 

properties135,136. Since chronic inflammation is a hallmark of disc degeneration, this 

polymer is an attractive candidate for the development of biomaterials-based regenerative 

strategies. Physically, the mechanical properties of this polymer can be tailored by reducing 

or increasing the number of methacrylate groups on the polymer backbone. By adjusting 

the degree of methacrylation, as well as the ECM particle size and concentration, and cell 

density, the biomechanical properties, cell-cell and cell-ECM interactions within the 3-D 

hydrogel composites can be tuned, all of which influence cell phenotype. Commercially-

sourced bovine tendon collagen (COL) was incorporated into the MCS hydrogels as a non-

tissue specific control to better investigate the effects specific to the DNP. Previously, our 

group has used COL to fabricate bead foam scaffolds to compare the tissue-specific effects 

of decellularized adipose tissue (DAT) versus COL on human dermal fibrolasts149. This 

previous work demonstrated that the ECM source had tissue-specific effects on mediating 

cell survival and paracrine function, and supports the choice of the purified COL as a 

comparator for probing possible tissue-specific effects of the DNP. 

Recognizing that cell response is mediated by the scaffold biomechanical properties in 

addition to the biochemical environment162–164, physical characterization of the hydrogel 

was performed. First, the DNP and COL particles were characterized to confirm the particle 

size distributions were similar, as variations in size could influence cell-cell and cell-ECM 

interactions. While a range of particle sizes was observed, the majority of particles were in 

the expected size range of 45 μm to 125 μm. The results revealed that there were no 
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significant differences in the size distributions of the DNP and COL particles, suggesting 

that particle size was not a confounding factor in the observed response. The presence of 

particles <45 µm may be attributed to aggregation of smaller particles during sieving, and 

the presence of particles >125 µm could be due to swelling and aggregation following 

particle rehydration. Next, analysis of gel content revealed no significant differences 

between MCS+DNP, MCS+COL and single-phase MCS hydrogel constructs, indicating 

that integration of the DNP and COL at 5 w/v% did not compromise the hydrogel 

crosslinking efficacy. Finally, unrestricted bulk compression testing results suggested that 

single-phase MCS constructs were significantly stiffer than MCS+COL constructs, while 

there were no significant differences between the other groups. The COL matrix may be 

functioning as a spacer, resulting in fewer crosslinks between polymer chains of the MCS, 

introducing defects or inhomogeneities into the polymer network and resulted in a less stiff 

substrate. Since the DNP has a high amount of GAG content as compared to the previously 

characterized COL149, it is possible that the DNP may bind to water and contribute to the 

compressive properties of the MCS+DNP constructs more-so than the COL. Importantly, 

there were no significant differences between MCS+DNP and MCS+COL bulk 

compressive moduli, suggesting that the bulk mechanical properties were not a major 

influencing factor in the cell response in the subsequent studies.  

Following physical characterization of the hydrogel constructs, in vitro studies focused on 

examining the effects of DNP on human NP progenitor-like cell viability, retention and 

differentiation, with COL and single-phase MCS controls. Since primary notochord cells 

are difficult to obtain and current protocols for NP cell monolayer culture do not effectively 

maintain cell phenotype in vitro, the human chordoma-derived U-CH1 cell line was used 

as a model of human NP progenitors143. These cells demonstrate a stable notochord-like 

phenotype in vitro, marked by the expression of the embryonic notochord markers 

brachyury, CD24, KRT19, epithelial marker antigen, vimentin, and cytokeratin144–146. A 

cell density of 10 x 106 cells/mL of final gel volume was selected based on previous work 

with adipose-derived stem/stromal cells (ASCs) encapsulated within MCS + adipose ECM 

constructs139. This cell density was found to be favourable in promoting adipogenesis by 

increasing cell-cell contact140. In future studies further investigating the MCS ± DNP/COL 

constructs, the cell density could be adjusted to tune cell-cell contact. However, for the 
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purpose of this study, this cell density was selected as a starting point and was kept constant 

between constructs.  

The U-CH1 cells were cultured within the MCS ± DNP/COL constructs for up to 7 days, 

and cell viability and retention following encapsulation within the hydrogels were 

qualitatively assessed by confocal imaging with LIVE/DEAD® staining. While the 

viability and abundance of U-CH1 cells within all of the groups were qualitatively similar 

at the 24 h timepoint, the MCS groups incorporating ECM particles showed qualitatively 

enhanced cell viability and retention over time as compared to the single-phase MCS 

group. At both 3 and 7 days, there was noticeable cell death and a marked decrease in the 

cell density of the U-CH1 cells encapsulated within the single-phase MCS hydrogels. 

Similarly, preliminary studies with U-CH1 cells cultured within thermally-crosslinked 

constructs at longer timepoints showed that there were qualitatively more viable cells 

present within the MCS+DNP hydrogels after 14 days of culture as compared to 

MCS+COL and single phase MCS constructs. These results suggest that the ECM particles 

provided cell-instructive cues that supported the viability and retention of the U-CH1 cells 

within this 3-D hydrogel platform, and preliminary work may suggest that the DNP may 

provide tissue-specific cues that better support these NP progenitor-like cells within the 

constructs at later timepoints.  

Previous work has shown that the NP ECM alone is cell supportive, likely due to its native 

microarchitecture and biochemical signalling118,152,165,166. Composite DNP hydrogel 

scaffolds fabricated using chemical crosslinking156, agarose120, or pepsin digestion121 

maintained this cell-supportive microenvironment by promoting ASC156, MSC120 or NP 

cell viability120,121 in long-term in vitro culture (over 14156 or 21 days120,121), and promoting 

the production of GAG120,121,156. While our study is the first to culture the U-CH1 cells 

within MCS hydrogels, previous studies have successfully cultured other notochordal cells 

isolated from porcine167, canine168 or bovine169 IVDs within 3-D hydrogels, such as 

alginate, and have been able to maintain cell viability167–169. The cells used in these studies 

were not chordoma-derived, so it is difficult to elucidate the exact reason for the marked 

U-CH1 cell death within our constructs. While speculative, the dramatic decrease in cell 

density in the single-phase MSC hydrogels may be attributed in part to the stiffness of the 

gels. Following 3 and 7 days of culturing, a noticeable number of cells were found in the 
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media during media changes. Scaffold stiffness has been shown to influence cell adhesion, 

cytoskeleton organization, motility and differentiation capacity162–164. For example, rat 

kidney epithelial cells and fibroblasts were found to have reduced spreading and increased 

rates of motility on stiff substrates as compared to softer substrates170. Another possible 

reason for the loss of U-CH1 cells within the MCS hydrogels may be due to pore size. 

Peyton et al. found that migration speed, displacement, and total path length of 

mesenchymal stem cells cultured within a 3-D poly(ethylene oxide) hydrogel scaffold 

depend strongly on pore diameter171. Future work could investigate the effects of 

modifying the degree of methacrylation to tune the scaffold stiffness and pore size with the 

goal of improving cell retention and promoting cell viability within the MCS constructs. 

Alternatively, more clinically relevant cell populations, such as mesenchymal stem/stromal 

cells (MSCs) sourced from adipose or bone marrow tissue, that may not exhibit the same 

migration profile as U-CH1 cells, could be tested within the constructs. 

In the final in vitro studies, the effects of DNP on directing cell differentiation were 

examined by quantifying the expression of a panel of notochord-associated (T and CD24), 

NP-associated (FOXA1 and SOX9), and ECM (ACAN, COL2A1 and COL1A1) genes in the 

MCS+DNP and MCS+COL constructs at 24 h and 3-day timepoints using RT-qPCR, with 

cells maintained on 2-D tissue culture plastic (TCP) serving as controls. Consistent with 

the decrease in cell densities noted in the viability analyses, gene expression analysis could 

not be performed at the 7-day timepoint or for the single-phase MCS group due to low 

RNA yields. U-CH1 cells encapsulated within the MCS+DNP hydrogels showed a 

significant decrease in notochord-associated gene expression (T and CD24), a significant 

increase in NP-associated gene expression (SOX9), and a significant decrease in ECM gene 

expression (ACAN and COL2A1), as compared to TCP controls. Similarly, cells 

encapsulated within the MCS+COL hydrogels showed a significant decrease in expression 

of one notochord-associated marker (CD24), with a significant increase in expression of 

the NP-associated marker FOXA1, along with a significant decrease in ECM gene 

expression (ACAN and COL2A1) as compared to TCP controls. Notochord cells have been 

found to have a higher expression of T and CD24 as compared to the NP cells74,84. These 

two markers are commonly used to identify cells with a notochord-like phenotype. FOXA1 

is a transcription factor that is involved in the formation of the notochord and maintenance 

of the NP172. SOX9 is a transcription factor that is strongly expressed in healthy human NP 
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cells173 and has been shown to promote aggrecan expression in human chondrocyte cells174. 

Loss of SOX9 results in the complete absence of cartilage175, and its expression in the IVD 

continues to be essential after skeletal maturity176, making it an important marker when 

assessing an NP-like phenotype. Interestingly, although SOX9 expression was significantly 

enhanced in cells within MCS+DNP, ACAN expression was noticeably downregulated. 

The expression of ACAN was also significantly downregulated in the cells cultured within 

the MCS+COL hydrogels. These findings suggest that culturing the U-CH1 cells in the 

GAG-rich environment of the MCS hydrogels resulted in the downregulation of ACAN 

expression. When cultured in an environment rich in a specific protein, cells have been 

shown to downregulate gene expression of that protein. For example, human dermal 

fibroblasts cultured within collagen type I gels show significantly reduced mRNA levels 

of the collagen type I gene after 2 days of culture177. The expression of COL2A1 in our 

study was also downregulated over time in both groups. While collagen type II has not 

specifically been characterized in the DNP or COL, previous studies assessing the presence 

of ECM proteins in the COL have shown that it is rich in several types of collagens, 

including collages type IV, V and VI149. More than 85% of the collagen in the native NP 

is collagen type II178 and it is likely abundant in our resulting DNP based on the 

histological, SEM and biochemical analyses. Future characterization of aggrecan and 

collagen type II in both ECM by immunohistochemistry could confirm the above 

interpretation. 

Interestingly, the changes in gene expression patterns differed between the two ECM 

hydrogel groups, suggesting that the DNP and COL particles have cell-instructive cues 

unique to their biochemical/structural composition. Since the confounding effects 

associated with particle size, biomechanical properties and cell density were controlled for 

between the MCS+DNP and MCS+COL groups, the differences in gene expression seen 

between these groups is likely attributed to the differing effects of the specific ECM 

proteins. Given that both notochord-associated markers tested were downregulated in the 

cells within MCS+DNP and NP-associated marker SOX9 was upregulated, it appears that 

the DNP may have a slightly more pronounced bioactive effect in modulating the 

maturation of notochord cells towards an NP-like phenotype, as compared to the COL, 

although further studies are warranted to assess these possible differences using cell 

populations that show superior long-term viability and retention as compared to the U-CH1 
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cell line  . While the gene expression patterns we assessed suggest progression towards an 

NP-like phenotype, it is challenging to definitively interpret the results since there are no 

markers that clearly distinguish notochord cells from mature NP cells, since the temporal 

regulation of the gene expression from notochord to NP is not well characterized. Genes 

expressed in the notochord are also expressed in mature NP cells, in keeping with the 

finding that all cells of the NP have a shared ontogeny83.  This highlights the need to better 

characterize expression profiles of notochord and NP cells to understand changes in the 

cell populations that may represent different stages of development. Further work in 

characterizing the gene and protein expression of other notochord-like and NP-like markers 

at longer timepoints would aid in better understanding the effects of the DNP on NP 

progenitor cells. 
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Chapter 5  

5 Conclusion 

5.1 Summary of findings 
In the first aim, a new protocol was developed to decellularize bovine nucleus pulposus 

(NP), with the goal of enabling cell extraction, while retaining glycosaminoglycan (GAG) 

and collagen, key extracellular matrix (ECM) components predicted to be favourable for 

bioactivity. Parameters investigated included freeze-thaw cycles in varying hypotonic 

solutions, enzymatic digestion methods, and the effects of detergent washes. Applying a 

systematic approach, the initial 10-day cartilage decellularization protocol (Flynn Lab, 

unpublished) tested on the bovine NP was refined to a simple 1-day detergent-free method. 

Treatment with 1 freeze-thaw cycle in deionized water, followed by a 2 h enzymatic 

digestion with DNase and RNase in Sorensen’s phosphate buffer digest solution effectively 

extracted ~89% double stranded DNA content. The decellularized tissues maintained 

collagen structure, and retained ~36% of total sulphated GAG, as compared to <14% for 

the initial methods tested. Standardizing the NP surface area exposed, the tissue-to-solution 

volume ratio, and the speed of agitation during incubation were found to be important 

factors in NP decellularization. Scanning electron microscope imaging suggested 

preservation of the mesh-like ECM ultrastructure of the native bovine NP in the 

decellularized NP (DNP). To create a tunable 3-D platform that mimics the native NP 

environment, cryomilled DNP was incorporated into in situ UV-crosslinking 

methacrylated chondroitin sulphate (MCS) hydrogels. Commercially sourced bovine 

tendon collagen (COL) was incorporated into the MCS hydrogels as a non-tissue specific 

control for experimental comparisons.  

In the second aim, composite MCS ± DNP/COL hydrogels scaffolds were successfully 

fabricated, and the physical properties of the gels were characterized to control for 

confounding effects associated with particle size, biomechanical properties and cell 

density. The MCS ± DNP/COL constructs did not have significant differences in swelling 

from each other, and were stable in culture after 7 days. The particles size distributions of 

the cryomilled DNP were not significantly different from those of the COL, minimizing 

confounding factors of differing cell-cell interactions between the two groups. Gel content 



www.manaraa.com

56 

 

analysis revealed that integration of the DNP or COL particles at 5 w/v% within the MCS 

did not compromise crosslinking efficacy. The bulk compressive modulus of single phase 

MCS was significantly higher than MCS+COL, indicating that incorporation of COL may 

have introduced defects or inhomogeneities into the polymer network. Importantly, there 

were no significant differences between MCS+DNP and MCS+COL constructs, 

minimizing the influence of bulk mechanical properties in the cell response between these 

two groups. 

For the final aim, in vitro studies assessed the viability, retention, and differentiation of the 

U-CH1 human notochord-like cell line encapsulated within MCS ± DNP/COL constructs. 

While the viability and abundance of the cells after 24 hours of culture appeared 

qualitatively similar between groups, the constructs incorporating ECM particles better 

supported cells over time as compared to the single-phase MCS, which had overt cell death 

and a marked decrease in the cell density at both 3 and 7 days. This suggested that the ECM 

particles have some structural and/or biochemical cues that better support these NP 

progenitor-like cells within the constructs. The gene expression analyses revealed that 

notochord-related markers T and CD24 were downregulated in U-CH1 cells within 

MCS+DNP, and the NP-associated marker SOX9 was upregulated. In contrast, U-CH1 

cells cultured in MCS+COL showed downregulation of the notochord-associated marker 

CD24, and upregulation of the NP-associated marker FOXA1. U-CH1 cells cultured for 

7 days within MCS ± DNP/COL constructs and single phase MCS groups could not be 

assessed by RT-qPCR due to low RNA yields, consistent with the marked decrease in cell 

density seen in the viability analyses. Taken together, the results suggest that the ECM 

particles provided cell-instructive cues that supported the viability and retention of the U-

CH1 cells within this 3-D hydrogel platform and promoted the differentiation of the 

notochord-like cells towards an NP-like phenotype.  

5.2 Conclusion 
For the first time in literature to date, a simple detergent-free method was developed to 

decellularize bovine NP without the need of excessive physical processing or prolonged 

incubation times. The protocol was successful in effectively and consistently reducing 

cellular and nuclear content, while retaining GAG and collagen, and qualitatively 

preserving the mesh-like ECM ultrastructure of the native bovine NP. In addition to 
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minimizing processing that may reduce the innate bioactivity of the ECM, the simple 

treatment steps in this protocol also allow the DNP to be easily scaled-up for possible future 

commercialization. The collective findings in this thesis highlight the potential of the DNP 

as a cell-instructive material that may promote the lineage-specific differentiation of human 

notochord-like cells into an NP-like phenotype. These studies established a flexible 3-D 

platform that mimics the native NP microenvironment and has the potential to restore 

mechanical function in the spine. Detailed in vitro studies using this system will provide 

valuable insight into the effects of tissue-specific ECM on NP progenitor cell fate. 

5.3 Future directions 
While the work in this thesis served as a basis for the rational design of a scaffold for NP 

regeneration or repair, future studies should focus on improving the viability and retention 

of encapsulated cells. Refinement of the cell density, ECM particle size and concentration, 

scaffold pore size and/or stiffness, complimented with in vitro assessment of the cells 

would enable detailed time course studies that further investigate the cell-instructive 

potential of the DNP.  

Previous work suggests that cell density, ECM particle size and concentration, and scaffold 

pore size and stiffness are factors that affect cell viability, motility and differentiation 

capacity142,170,171. It may be of importance to modulate these factors within the 

MCS ± DNP/COL constructs to find a balance that enables appropriate cell-cell and cell-

ECM contact, while maintaining access to nutrients. While high cell-cell contact may 

mimic the early stages of NP development and may promote the differentiation of 

notochord-like cells towards an NP-like phenotype, there is also an increase in competition 

for nutrients, which may result in greater cell death within the scaffolds and migration into 

the media. It might be of interest to test higher and lower concentrations of DNP within the 

scaffolds, as well to find a favourable balance of ECM that promotes retention of cells and 

differentiation towards an NP-like phenotype. Smaller scaffold pore sizes have been shown 

to increase cell motility171, thus the effects of increasing pore size of the MCS constructs 

could be investigated. Finally, decreasing the scaffold stiffness to promote the retention of 

U-CH1 cells could also be assessed. Future work focusing on tuning these parameters 

individually or in combination with one another may improve the viability and retention of 

U-CH1 cells within the hydrogel scaffolds. Moreover, these studies should be repeated 
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using a stable NP cell line (i.e. primary bovine NP cells) to determine if properties of 

enhanced cell migration associated with the tumour-derived U-CH1 cell line affected our 

experimental outcome.  

While confocal imaging allowed for the visualization of cells within the gels, the technique 

was limited to a focal depth of ~200 µm. When assessing viability and proliferation of cells 

within the scaffolds, future work could analyze metabolic activity by the Alamar Blue 

assay to compliment the confocal findings. To further support the gene expression findings 

in this thesis, the addition of other notochord-associated markers (e.g. KRT8/18/19) and 

NP-associated markers (e.g. PAX1, FOXF1) could be explored over a longer time course 

(e.g. 24 hours, 7, 14 and 21 days). The 24-hour timepoint could capture initial changes in 

the gene expression, while the later timepoints could highlight the progression of changes 

in response to the DNP over time. In addition, assessment of these markers at the protein 

level by western blot, ELISA and/or immunohistochemistry should be used to validate 

changes in cell phenotype at the protein level. 

Finally, more clinically relevant cell populations, such as mesenchymal stem/stromal cells 

(MSCs) sourced from adipose or bone marrow tissue, that may not exhibit the same 

migration profile as U-CH1 cells, could be tested within the MCS ± DNP/COL constructs. 

Previously, MCS has been shown to be a supportive environment for adipose-derived 

stem/stromal cells (ASCs)139,142,179. Multiple studies have explored the use of ASCs for NP 

regeneration; however, their analysis did not differentiate NP from cartilage-associated 

gene expression in the differentiated cell types154,156,180. Markers commonly used to 

identify an NP-like phenotype are also expressed highly in chondrocytes, which are distinct 

from the NP cells in ECM composition10 and phenotype181. As such, it would be of 

importance to assess the expression of NP positive/articular cartilage (AC) negative 

markers (e.g. KRT18/19, PAX1, CA12) and NP negative/AC positive markers (e.g. GDF10, 

CYTL1, IBSP) to assure the cells are not differentiating towards a cartilage-like phenotype 

instead of an NP-like phenotype.  

Collectively, these studies would aid in the rational design of an engineered cellular 

microenvironment that promotes an NP-like phenotype, as a step towards establishing this 

scaffold as a potential biomaterial-based therapy for the eventual long-term goal of clinical 

application. 
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Appendix: Supplemental Figures 

 

 

Supplemental Figure 1: Histological analysis of tissue processed with 
decellularization Supplemental Protocol 1. A) Protocol overview, with sampling points 
shown in colour. Acronyms: Tris = tris (hydroxymethyl)aminomethane, EDTA = 
ethylenediaminetetraacetic acid, SPB = Sorensen’s phosphate buffer. B) Representative   
safranin-O/fast green staining of GAG (pink) and collagen (blue-green), Masson’s 
trichrome staining of collagen (blue), and DAPI nuclear staining (white), (n=3, serial 
sections throughout the whole tissue sample). Scale bars = 200 µm. This study 
demonstrated that the freeze-thaw cycles were important for the effective removal of nuclei 
from the tissues at the end of processing. 
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Supplemental Figure 2: Histological and quantitative analyses of tissue processed 
with decellularization Supplemental Protocol 2. A) Protocol overview, with sampling 
points shown in colour. Acronyms: F/T = freeze-thaw cycle, SPB = Sorensen’s phosphate 
buffer. B) Representative Toluidine blue staining of GAG (purple), Picrosirius red staining 
of collagen (orange), and DAPI nuclear staining (white), (n=3, serial sections throughout 
the whole tissue sample). Scale bars for Toluidine blue and DAPI staining = 200 µm. Scale 
bars for Picrosirius red staining = 100 µm. C) Quantitative biochemical analysis of the 
processed DNP and native tissues including sGAG content as determined by the DMMB 
assay, hydroxyproline content as a measure of total collagen content by the hydroxyproline 
assay, and dsDNA content as determined by the PicoGreen assay (n=3, N=1 for all assays). 
Data are presented as mean ± SD. This study demonstrated that GAG was lost with each 
freeze-thaw cycle.  



www.manaraa.com

73 

 

 

Supplemental Figure 3: Representative confocal microscopy images showing 
LIVE/DEAD® staining of U-CH1 cells encapsulated within the MCS ± DNP/COL 
hydrogel constructs through thermal crosslinking and cultured in vitro over 14 days. 
Live cells were stained with calcein-AM (green) and dead cells were stained with ethidium 
homodimer-1 (red). The DNP and COL particles appear blue due to ECM 
autofluorescence. Images were captured at a depth of ~100 µm. Scale bars = 500 µm. 
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Supplemental Table 1: All iterations of treatment steps tested to decellularize bovine 
nucleus pulposus and their results and conclusions. * = sampling points. Acronyms: 
ABAM = antibiotic-antimycotic, PMSF = phenylmethylsulfonyl fluoride, NP = nucleus 
pulposus, ECM = extracellular matrix, GAGs = glycosaminoglycans, F/T = freeze-thaw 
cycles, Tris = tris(hydroxymethyl)aminomethane, EDTA = ethylenediamine-tetraacetic 
acid, SPB = Sorensen’s phosphate buffer, TBP = tributyl phosphate, PBS = phosphate 
buffered saline, dH2O = deionized water, DMMB = dimethylmethylene blue, dsDNA = 
double stranded DNA. All solutions, with the exception of the enzymatic digestion steps, 
were supplemented with 1 v/v% ABAM and 0.27 mM PMSF; the enzymatic digestions 
(15,000 U DNase Type II and 12.5 mg RNase Type III) were supplemented with only 1 
v/v% ABAM. Solution volumes were kept constant at 100 mL of solution in a 500 mL 
tissue tub for all treatment steps, with ~15 g of NP per 100 mL. Freezing was performed at 
-80°C overnight and thaw at 37°C with 125 rpm for all freeze-thaw cycles. All incubations 
were performed at 37°C with 125 rpm unless noted otherwise. Tissues were rinsed in dH2O 
for 3 x 30 min and PBS for 3 x 30 min (iterations 1-8), or only PBS for 3 x 30 min (iterations 
9-11) at room temperature under 125 rpm agitation prior to collection. 
 
Iteration Treatment Steps Summary of Results & Conclusions 
1 
 
Presented as 
“Protocol 1” in 
Thesis (e.g. 
Fig. 3.1) 

NP sectioned into quarters 
following dissection*. 
 
1. 3 F/T in 10 mM Tris + 

5 mM EDTA.  
2. 10 mM Tris + 5 mM 

EDTA for 24 h (37°C; 
125 rpm).  

3. 2% Triton X-100 in 
1.5M KCl + 50 mM Tris 
for 48 h (37°C; 125 rpm 
for the first 24 h, 200 rpm 
for the next 24 h). 

4. PBS rinse for 3 x 30 min 
(37°C; 200 rpm).  

5. DNase RNase in SPB for 
5 h (37°C; 200 rpm). 

6. 1% TBP in 50 mM Tris 
for 72 h (37°C; 200 rpm). 

7. dH2O rinse for 3 x 30 min 
(37°C; 200 rpm). 

8. PBS rinse for 3 x 30 min 
(37°C; 200 rpm). 

9. 50 mM Tris for 48 h 
(37°C; 200 rpm)*. 

 
Replacing with fresh solution 
following each thaw and every 
~12 h. 
 

Effects on NP ECM: 
• GAGs: no detectable GAGs in 

processed NP visualized by safranin-
O/fast green staining. 

• Collagen: darker staining for collagen 
in processed NP visualized by Masson’s 
trichrome stain.  

• Nuclei: no detectable nuclei in 
processed NP visualized by DAPI 
fluorescent stain. 

 
Conclusions: Treatments in iteration 1 
reduced nuclei, but resulted in a substantial 
qualitative loss in GAG in the processed NP.  
 
Plan: In an attempt to preserve more GAG, 
explore effects of reduced treatment time by 
eliminating the 24 h incubation in 10 mM 
Tris + 5 mM EDTA and reducing the 1% 
TBP incubation from 72 h to 18 h.  
 
Explore effects of 1% Triton X-100 detergent 
incubation, since Triton may better preserve 
more soluble ECM components as compared 
to TBP. 
 
Perform incubations in future iterations at 
125 rpm as tissues had greater aggregation at 
200 rpm. 
 
Note: stains used to visualize GAG, collagen 
and nuclei remain consistent in following 
iterations unless specified.  
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2 NP sectioned into eighths to 
increase surface area treated 
and reduce variability*. 
 
1. 3 F/T in 10 mM Tris + 

5 mM EDTA. 
2. 10 mM Tris + 5 mM 

EDTA for 24 h.  
3. 2% Triton X-100 in 

1.5M KCl + 50 mM Tris 
for 48 h.  

4. PBS rinse for 3 x 30 min. 
5. DNase RNase in SPB for 

5 h*, then samples split 
equally into:  

Þ Iteration 2A: 
6.  1% TBP in 50 mM 
Tris for 18 h*. 

Þ Iteration 2B: 
6.  1% Triton X-100 for 
18 h*. 

 
Replacing with fresh solution 
following each thaw, and 
every ~12 h. 
 

Effects on NP ECM:  
• GAGs: qualitative loss in processed NP 

post-DNase/RNase treatment. No 
detectable staining in NP processed 
through both iteration 2A and 2B.  

• Collagen: similar qualitative structure 
between native NP and post-
DNase/RNase treatment processed NP. 
Collagen distribution appeared 
disrupted (looser-looking structure) in 
NP processed through 2A and 2B.  

• Nuclei: Qualitative reduction in nuclei 
in NP throughout processing. 

 
Conclusions: treatment with TBP and Triton 
had similar qualitative effects on NP ECM. 
  
Triton X-100 detergent was selected for 
subsequent testing since it has previously 
been reported to better preserve protein–
protein interactions that may be disrupted 
with the use of TBP in other tissues1. 
 
Plan: Eliminate the 2% Triton wash before 
DNase/RNase treatment and explore effects 
of reduced 1% Triton incubation time from 
18 h to 2 h in an effort to preserve more 
GAGs. 
 

3 NP sectioned into eighths*. 
 
1. 3 F/T in 10 mM Tris + 

5 mM EDTA.* 
2. PBS rinse for 3 x 30 min.  
3. DNase RNase in SPB for 

5 h*,  
4. 1% Triton X-100 for 

2 h*. 

 
Replacing with fresh solution 
following each thaw. 
 
 

Effects on NP ECM:  
• GAGs: qualitatively increased loss of 

GAGs with each added treatment step. 
No detectable GAGs in processed NP 
following detergent treatment.  

• Collagen: similar qualitative structure 
and staining in processed NP before the 
DNase/RNase treatment step. The 
intensity of staining qualitatively 
increased in the processed NP following 
treatment with 1% Triton. 

• Nuclei: no noticeable loss of nuclei 
following F/T. Marked decrease in 
visible nuclei post-DNase/RNase 
treatment. 

 

                                                
1 Keane, T. J., Saldin, L. T. & Badylak, S. F. Decellularization of mammalian tissues: preparing 
extracellular matrix bioscaffolds. in Characterisation and Design of Tissue Scaffolds (Elsevier Ltd, 2015). 
doi:10.1016/b978-1-78242-087-3.00004-3 
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Conclusions: GAG is lost with each added 
treatment, and the F/T did not reduce visible 
nuclei. 
 
Plan: Explore effects of incubation in 
10 mM Tris + 5 mM EDTA to determine the 
importance of F/T. 
 

4 
 
Presented in 
the thesis as 
“Supplemental 
Protocol 1” in 
Supplemental 
Fig. 1 

NP sectioned into eighths*. 
 
1. 10 mM Tris + 5 mM 

EDTA for 2 h* 
2. PBS rinse for 3 x 30 min. 
3. DNase RNase in SPB for 

5 h* 
4. 1% Triton X-100 for 

2 h*. 

 

Effects on NP ECM:  
• GAGs: increased qualitative loss with 

each added treatment. No detectable 
positive staining in processed NP 
treated with 1% Triton.   

• Collagen: similar structure and staining 
intensity post-incubation in 10 mM Tris 
+ 5 mM EDTA. Qualitatively increased 
staining intensity post-DNase/RNase 
and 1% Triton detergent treatments.  

• Nuclei: no qualitative reduction of 
nuclei in NP processed through all 
treatments. 

 
Conclusions: F/T are important in cell lysis 
and removal of nuclei. 
 
Plan: Explore effects of reducing 3 F/T to 2 
F/T in an effort to preserve more GAGs. 
 

5 NP sectioned into eighths*. 
 
1. 2 F/T in 10 mM Tris + 

5 mM EDTA* 
2. PBS rinse for 3 x 30 min. 
3. DNase RNase in SPB for 

5 h*,  
4. 1% Triton X-100 for 

2 h*. 

 
Replacing with fresh solution 
following each thaw. 
 

Effects on NP ECM:  
• GAGs: increased qualitative and 

quantitative loss with each added 
treatment.  

• Collagen: quantitative increasing trend 
of relative collagen content in keeping 
with the quantitative loss of GAGs. 

• Nuclei: detectable nuclei in processed 
NP post-detergent treatment. 

 
Conclusions: 2 F/T in 10 mM Tris + 5 mM 
EDTA was found to be insufficient in 
reducing nuclei in NP segments at this size 
range.  
 
Plan: reduce size of NP sections in an effort 
to enhance cell extraction.   
 
Notes: The safranin-o/fast green stained 
samples in iteration 5 appeared to lose almost 
all GAGs post-F/T, whereas the quantitative 
results by DMMB assay showed ~72% 
retention of sulphated GAGs post-F/T. The 
staining intensity visualized by toluidine blue 
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was in keeping with the quantitative trends in 
GAGs within processed NP. Thus, toluidine 
blue staining was selected to visualize GAGs 
in subsequent treatments.  
Total collagen content was quantified by 
hydroxyproline assay. 
 

6 NP biopsy punched into 5 mm 
sections to increase surface 
area treated and reduce 
variability in processed NP*. 
 
1. 3 F/T in 10 mM Tris + 

5 mM EDTA, then 
samples split equally 
into:  

Þ Iteration 6A:  
2.  10 mM Tris + 5 mM 
EDTA for 18 h*. 

Þ Iteration 6B:  
2.  DNase RNase in SPB 
for 5 h*. 

Þ Iteration 6C:  
2.  DNase RNase in SPB 
for 5 h. 
3.  1% Triton X-100 for 
2 h*. 

 
Replacing with fresh solution 
following each thaw. 
 

Effects on NP ECM:  
• GAGs: Processed NP showed a marked 

qualitative decrease in staining 
intensity, with Iteration 6B having 
better qualitative preservation of GAGs. 
Quantitative results revealed ~10% 
greater loss of sulphated GAGs in NP 
processed through 6A.  

• Collagen: similar qualitative structure 
in NP processed though 6A-C, with an 
increasing quantitative trend of relative 
collagen content. 

• Nuclei: qualitative reduction in NP 
processed through 6A-C. 

 
Conclusions: the greater quantitative loss of 
GAGs in 6A may indicate that the EDTA in 
the solution may destabilize matrix.  
 
Plan: Investigate the effects of performing 
F/T in dH2O versus 10 mM Tris + 5 mM 
EDTA. 

7 
 
Presented in 
the thesis as 
“Protocol 2” in 
Fig. 3.2 
 

NP biopsy punched and 
sectioned into 2 mm x 2 mm to 
further increase the surface 
area and reduce variability*. 
 
Native NP samples split 
equally into:  
Þ Iteration 7A:  

1.  3 F/T in dH2O. 
2.  DNase RNase in SPB 
for 5 h*. 
3.  1% Triton X-100 for 
2 h*. 

Þ Iteration 7B:  
1.  3 F/T in 10 mM Tris 
+ 5 mM EDTA. 
2.  DNase RNase in SPB 
for 5 h. 
3.  1% Triton X-100 for 
2 h*. 

Effects on NP ECM:  
• GAGs: increased qualitative and 

quantitative loss with each added 
treatment as seen previously, with 
higher qualitative GAG retention in NP 
processed through iteration 7A as 
compared to 7B (~17% versus ~14% 
retention, respectively). 

• Collagen: similar distribution between 
NP processed through 7A and 7B, with 
an increasing quantitative trend of 
relative collagen content within 
processed tissues. 

• Nuclei: marked qualitative and 
quantitative decrease in nuclear content 
in NP processed through both 7A and 
7B, with greater reduction of dsDNA in 
7A as compared to 7B (~77% versus 
~61% reduction, respectively). 
Interestingly, the post-DNase/RNase 
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Replacing with fresh solution 
following each thaw. 
 
 

processed NP in 7A had similar levels 
of qualitative and quantitative nuclei as 
compared to the processed NP post-
detergent treatment. 

 
Conclusions: F/T in dH2O had a better 
qualitative preservation of GAG and more 
effectively reduced dsDNA content as 
compared to F/T in 10 mM Tris + 5 mM 
EDTA.  
 
Treatment with DNase/RNase following 3 
F/T in dH2O effectively reduces nuclear 
content while better preserving GAG as 
compared to the added Triton detergent 
treatment. 
 
Plan: Omit the detergent treatment and 
explore effects of each F/T in dH2O. 
 
Note: dsDNA content was determined by 
PicoGreen assay. Since staining for collagen 
by Masson’s trichrome was very faint and 
collagen distribution was difficult to 
visualize, subsequent testing employed the 
use of picrosirius red staining to better 
visualized collagen. 
 

8 
 
Presented in 
the thesis as 
“Supplemental 
Protocol 2” in 
Supplemental 
Fig. 2 
 

NP biopsy punched and 
sectioned into 2 mm x 2 mm*. 
 
1. 3 F/T in dH2O***. 
2. DNase RNase in SPB for 

5 h*. 

 
***sampling following each 
thaw. 
 
Replacing with fresh solution 
following each thaw. 
 

Effects on NP ECM:  
• GAGs: qualitative and quantitative 

decrease with each F/T, and following 
treatment with DNase/RNase. 

• Collagen: similar distribution and 
increasing quantitative trend with each 
added treatment. 

• Nuclei: noticeable reduction in nuclei 
following treatment with DNase/RNase. 
No noticeable reduction in nuclei 
following each F/T. 

 
Conclusions: GAG lost with each F/T. 
 
Plan: Explore effects of reducing F/T from 3 
to 1, and explore the effects of enzymatic 
digestion in dH2O versus SPB in an effort to 
preserve more GAGs.  
 

9 
 
 

NP biopsy punched and 
sectioned into 2 mm x 2 mm*. 
 

Effects on NP ECM:  
• GAGs: greater qualitative and 

quantitative loss in NP processed 
through 9A as compared to 9B (~22% 
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1. 1 F/T in dH2O*, then 
samples split equally 
into: 

Þ Iteration 9A:  
2.  DNase RNase in 
dH2O for 5 h*. 

Þ Iteration 9B:  
2.  DNase RNase in SPB 
for 5 h*. 

 

versus ~27% preservation, 
respectively).  

• Collagen: similar qualitative 
distribution and an increasing 
quantitative trend of collagen content 
consistent with the loss of GAGs. 

• Nuclei: marked reduction of dsDNA 
content in NP processed through 9A 
and 9B (~85% versus ~90% reduction, 
respectively),with some visible nuclei 
present. Treatment with 1 F/T alone 
resulted in an ~44% reduction in 
dsDNA content. 

 
Conclusions: enzymatic digestion in SPB 
better preserves GAGs and reduces nuclear 
content as compared to digestion performed 
in dH2O. The 1 F/T alone is insufficient in 
reducing nuclear content. 
  
Plan: Investigate the effects of reducing 
digestion incubation time from 5 h to 2 h, and 
explore the effects of PBS as the digestion 
solution.  
 

10 
 
Presented in 
the thesis as 
“Protocol 3” in 
Fig. 3.3 
 

NP biopsy punched and 
sectioned into 2 mm x 2 mm*. 
 
1. 1 F/T in dH2O*, then 

samples split equally 
into: 

Þ Iteration 10A:  
2.  DNase RNase in SPB 
for 5 h*. 

Þ Iteration 10B:  
2.  DNase RNase in SPB 
for 2 h*. 

Þ Iteration 10C:  
2.  DNase RNase in PBS 
for 2 h*. 

 

Effects on NP ECM:  
• GAGs: increased quantitative and 

qualitative preservation in NP processed 
with 10B and 10C as compared to 10A, 
with similar levels of GAG in 10B and 
10C. 

• Collagen: similar qualitative 
distribution and an increasing 
quantitative trend of collagen content 
consistent with the loss of GAGs 

• Nuclei: some visible nuclei present in 
NP, with 10A containing qualitatively 
fainter staining for nuclei. Quantitative 
results showed that NP processed 
through 10A and 10B has a greater 
reduction of dsDNA content than 10C, 
with similar levels between 10A and 
10B (~88% and ~89% reduction, 
respectively).  

 
Conclusions: enzymatic digestion in SPB for 
2 h better preserved GAG while effectively 
reducing nuclear content as compared to 
incubation for 5 h in SPB, as well as for 2 h 
in PBS. 
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Plan: In a final attempt to further preserve 
GAG, the effects of shortening the enzymatic 
digestion step to 1 h was explored.  
 

11 NP biopsy punched and 
sectioned into 2 mm x 2 mm*. 
 
1. 1 F/T in dH2O, then 

samples split equally 
into: 

Þ Iteration 11A:  
2.  DNase RNase in SPB 
for 2 h*. 

Þ Iteration 11B:  
2.  DNase RNase in SPB 
for 1 h*. 

 
 

Effects on NP ECM:  
• GAGs: increased quantitative and 

qualitative preservation in NP processed 
with 11B as compared to 11A (~64% 
versus ~35% retained, respectively). 

• Collagen: similar qualitative 
distribution and an increasing 
quantitative trend of collagen content 
consistent with the loss of GAGs 

• Nuclei: some visible nuclei present in 
NP processed through 11A and 11B, 
with 11A having a greater reduction of 
dsDNA content than 10C, (~48% versus 
~83% reduction, respectively).  

 
Conclusions: while enzymatic digestion in 
SPB for 1 h better preserved GAG, it 
insufficiently reduced nuclear content.  
 
Iteration 11A was selected as the final NP 
decellularization protocol for subsequent 
studies. 
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